09/29 - Analogy to Vector Spaces: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let the vector <math> \vec v </math> be defined as: |
Let the vector <math> \vec v </math> be defined as: |
||
*<math>\vec v = a_1 \cdot \hat v_1 + a_2 \cdot \hat v_2 + a_3 \cdot \hat v_3</math> |
*<math>\vec v = a_1 \cdot \hat v_1 + a_2 \cdot \hat v_2 + a_3 \cdot \hat v_3 = \sum_{j=1}^3 v_j \cdot \hat a_j </math> |
||
**<math> a_1, a_2, a_3 \,\!</math> are the coefficients |
**<math> a_1, a_2, a_3 \,\!</math> are the coefficients |
||
**<math> \hat v_1, \hat v_2, \hat v_3 </math> are the basis vectors |
**<math> \hat v_1, \hat v_2, \hat v_3 </math> are the basis vectors |
Revision as of 12:27, 6 November 2008
Let the vector be defined as:
-
- are the coefficients
- are the basis vectors
- A vector basis is a set of n linearly independent vectors capable of generating? an n-dimensional subspace? of