Fourier series - by Ray Betz: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 83: Line 83:


</math>
</math>

What happens if we just shift the time of <math> x(t) </math>?

<math> x(t-t_0) = \int_{-\infty}^\infty X(f) e^{j 2 \pi f(t-t_0)} df = \int_{-\infty}^\infty e^{-j 2 \pi f t_0} X(f) e^{j 2 \pi f t} df = \mathcal{F}^{-1}[e^{-j 2 \pi f t_0} X(f)] </math>

In the same way, if we shift the frequency we get:

<math> X(f-f_0) = \int_{-\infty}^\infty x(t) e^{j 2 \pi (f-f_0)t} dt = \int_{-\infty}^\infty e^{-j 2 \pi t f_0} x(t) e^{j 2 \pi f t} df = \mathcal{F} [e^{-j 2 \pi t f_0} x(t)] </math>

What would be the Fourier transform of <math> cos(2 /pi f_0 t) x(t) </math>?


<

Revision as of 21:14, 23 October 2005

Fourier Series

If

  1. Dirichlet conditions are satisfied

then we can write

The above equation is called the complex fourier series. Given , we may determine by taking the inner product of with . Let us assume a solution for of the form . Now we take the inner product of with .

If then,

If then,

We can simplify the above two conclusion into one equation.

So, we may conclude

Orthogonal Functions

The function and are orthogonal on if and only if .

The set of functions are orthonormal if and only if .

Linear Systems

I may come back to this latter...

Fourier Series (indepth)

I would like to take a closer look at in the Fourier Series. Hopefully this will provide a better understanding of .

We will seperate x(t) into three parts; where is negative, zero, and positive.

Now, by substituting into the summation where is negative and substituting into the summation where is positive we get:

Recall that

If is real, then . Let us assume that is real.

Recall that Here is further clarification on this property

So, we may write:

Fourier Transform

Fourier transforms emerge because we want to be able to make Fourier expressions of non-periodic functions. We can take the limit of those non-periodic functions to get a fourier expression for the function.

Remember that:


So,

From the above limit we define and .

We can take the derivitive of and then put in terms of the reverse fourier transform.

What happens if we just shift the time of ?

In the same way, if we shift the frequency we get:

What would be the Fourier transform of ?


<