|
|
Line 83: |
Line 83: |
|
|
|
|
|
</math> |
|
</math> |
|
|
|
|
|
What happens if we just shift the time of <math> x(t) </math>? |
|
|
|
|
|
<math> x(t-t_0) = \int_{-\infty}^\infty X(f) e^{j 2 \pi f(t-t_0)} df = \int_{-\infty}^\infty e^{-j 2 \pi f t_0} X(f) e^{j 2 \pi f t} df = \mathcal{F}^{-1}[e^{-j 2 \pi f t_0} X(f)] </math> |
|
|
|
|
|
In the same way, if we shift the frequency we get: |
|
|
|
|
|
<math> X(f-f_0) = \int_{-\infty}^\infty x(t) e^{j 2 \pi (f-f_0)t} dt = \int_{-\infty}^\infty e^{-j 2 \pi t f_0} x(t) e^{j 2 \pi f t} df = \mathcal{F} [e^{-j 2 \pi t f_0} x(t)] </math> |
|
|
|
|
|
What would be the Fourier transform of <math> cos(2 /pi f_0 t) x(t) </math>? |
|
|
|
|
|
|
|
|
< |
Fourier Series
If
- Dirichlet conditions are satisfied
then we can write
The above equation is called the complex fourier series. Given , we may determine by taking the inner product of with .
Let us assume a solution for of the form . Now we take the inner product of with .
If then,
If then,
We can simplify the above two conclusion into one equation.
So, we may conclude
Orthogonal Functions
The function and are orthogonal on if and only if .
The set of functions are orthonormal if and only if .
Linear Systems
I may come back to this latter...
Fourier Series (indepth)
I would like to take a closer look at in the Fourier Series. Hopefully this will provide a better understanding of .
We will seperate x(t) into three parts; where is negative, zero, and positive.
Now, by substituting into the summation where is negative and substituting into the summation where is positive we get:
Recall that
If is real, then . Let us assume that is real.
Recall that Here is further clarification on this property
So, we may write:
Fourier Transform
Fourier transforms emerge because we want to be able to make Fourier expressions of non-periodic functions. We can take the limit of those non-periodic functions to get a fourier expression for the function.
Remember that:
So,
From the above limit we define and .
We can take the derivitive of and then put in terms of the reverse fourier transform.
What happens if we just shift the time of ?
In the same way, if we shift the frequency we get:
What would be the Fourier transform of ?
<