10/3,6 - The Game: Difference between revisions
Jump to navigation
Jump to search
Line 34: | Line 34: | ||
==Example== | ==Example== | ||
Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math> | Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math> | ||
{| border="0" cellpadding="0" cellspacing="0" | |||
|- | |||
|<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda </math> | |||
|<math>= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du</math> | |||
|,Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math> | |||
|- | |||
| | |||
|<math>=\underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math> | |||
| | |||
|- | |||
| | |||
|<math>=H(\omega_n)\,\!</math> | |||
| | |||
|} | |||
<math>\int_{-\infty}^{\infty} e | *Note that <math>\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(n)\, du</math> can be written as <math>\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle</math> or <math>H(\omega_u)\,\!</math> | ||
*The order of integration switched due to changing from <math>-\lambda = u\,\!</math> | *The order of integration switched due to changing from <math>-\lambda = u\,\!</math> | ||
*Explain the rest of the page | *Explain the rest of the page |
Revision as of 17:22, 12 November 2008
The Game
The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.
Input | LTI System | Output | Reason |
Given | |||
Time Invarience | |||
Proportionality | |||
Superposition |
With the derived equation, note that you can put in any to find the given output. Just change your t for a lambda and plug n chug.
Example
Let
,Let thus | ||
- Note that can be written as or
- The order of integration switched due to changing from
- Explain the rest of the page