10/3,6 - The Game: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
Fonggr (talk | contribs)
Line 34: Line 34:
==Example==
==Example==
Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math>
Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math>
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda </math>
|<math>= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du</math>
|,Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math>
|-
|
|<math>=\underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math>
|
|-
|
|<math>=H(\omega_n)\,\!</math>
|
|}


<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda
*Note that <math>\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(n)\, du</math> can be written as <math>\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle</math> or <math>H(\omega_u)\,\!</math>
= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du
= \underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math>
*Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math>
*The order of integration switched due to changing from <math>-\lambda = u\,\!</math>
*The order of integration switched due to changing from <math>-\lambda = u\,\!</math>
*Explain the rest of the page
*Explain the rest of the page

Revision as of 17:22, 12 November 2008

The Game

The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.

Input LTI System Output Reason
δ(t) h(t) Given
δ(tλ) h(tλ) Time Invarience
x(λ)δ(tλ) x(λ)h(tλ) Proportionality
x(t)=x(λ)δ(tλ)dx x(λ)h(tλ)dxConvolutionIntegral Superposition

With the derived equation, note that you can put in any x(t) to find the given output. Just change your t for a lambda and plug n chug.

Example

Let x(t)=ej2πnt/T=ej2πωnt

ej2πωnλh(tλ)dλ =ej2πωn(tu)h(u)du ,Let tλ=u thus du=dλ
=(ej2πωnuh(u)du)eigenvalueej2πωnteigenfunction
=H(ωn)
  • Note that ej2πωnuh(n)du can be written as hej2πωnu or H(ωu)
  • The order of integration switched due to changing from λ=u
  • Explain the rest of the page