10/3,6 - The Game: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
| Line 36: | Line 36: | ||
{| border="0" cellpadding="0" cellspacing="0" | {| border="0" cellpadding="0" cellspacing="0" | ||
|- | |- | ||
|<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda </math> | |<math> e^{j2\pi \omega_n t} </math> | ||
|<math> = \int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda </math> | |||
|Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math> | |||
|- | |||
| | |||
|<math>= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du</math> | |<math>= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du</math> | ||
| | |The order of integration switched due to changing from <math>-\lambda = u\,\!</math> | ||
|- | |- | ||
| | | | ||
| Line 50: | Line 54: | ||
*Note that <math>\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(n)\, du</math> can be written as <math>\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle</math> or <math>H(\omega_u)\,\!</math> | *Note that <math>\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(n)\, du</math> can be written as <math>\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle</math> or <math>H(\omega_u)\,\!</math> | ||
*Explain the rest of the page | *Explain the rest of the page | ||
Revision as of 17:33, 12 November 2008
The Game
The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.
| Input | LTI System | Output | Reason |
| Given | |||
| Time Invarience | |||
| Proportionality | |||
| Superposition |
With the derived equation, note that you can put in any to find the given output. Just change your t for a lambda and plug n chug.
Example
Let
| Let thus | ||
| The order of integration switched due to changing from | ||
- Note that can be written as or
- Explain the rest of the page