10/3,6 - The Game: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
Line 49: Line 49:
|-
|-
|
|
|<math>=H(\omega_n)\,\!</math>
|<math>=\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle e^{j2\pi \omega_n t}</math>
|Different notation
|-
|
|
|<math>=H(\omega_n)e^{j2\pi \omega_n t}</math>
|Different notation
|}
|}
*Note that <math>\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(n)\, du</math> can be written as <math>\left \langle h \mid e^{j2\pi \omega_n u} \right \rangle</math> or <math>H(\omega_u)\,\!</math>
*Explain the rest of the page

Revision as of 17:36, 12 November 2008

The Game

The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.

Input LTI System Output Reason
δ(t) h(t) Given
δ(tλ) h(tλ) Time Invarience
x(λ)δ(tλ) x(λ)h(tλ) Proportionality
x(t)=x(λ)δ(tλ)dx x(λ)h(tλ)dxConvolutionIntegral Superposition

With the derived equation, note that you can put in any x(t) to find the given output. Just change your t for a lambda and plug n chug.

Example

Let x(t)=ej2πnt/T=ej2πωnt

ej2πωnt =ej2πωnλh(tλ)dλ Let tλ=u thus du=dλ
=ej2πωn(tu)h(u)du The order of integration switched due to changing from λ=u
=(ej2πωnuh(u)du)eigenvalueej2πωnteigenfunction
=hej2πωnuej2πωnt Different notation
=H(ωn)ej2πωnt Different notation