10/09 - Fourier Transform: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 46: | Line 46: | ||
|<math>=X(f)\,\!</math> |
|<math>=X(f)\,\!</math> |
||
|<math>=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt</math> |
|<math>=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt</math> |
||
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \ |
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle_t</math> |
||
|- |
|- |
||
|<math>F^{-1}[x(t)]\,\!</math> |
|<math>F^{-1}[x(t)]\,\!</math> |
||
|<math>=x(t)\,\!</math> |
|<math>=x(t)\,\!</math> |
||
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft} |
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}df</math> |
||
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \ |
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle_f</math> |
||
|} |
|} |
||
==Examples== |
==Examples== |
||
Line 57: | Line 57: | ||
|- |
|- |
||
|<math>F^{-1}[F[x(t)]]\,\!</math> |
|<math>F^{-1}[F[x(t)]]\,\!</math> |
||
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt\right ]e^{j2\pi ft} df</math> |
|||
⚫ | |||
|- |
|- |
||
| |
| |
||
|<math>= |
|<math>=\int_{-\infty}^{\infty}X(f) e^{j2\pi ft} df</math> |
||
|- |
|||
| |
|||
⚫ | |||
|} |
|} |
Revision as of 14:10, 17 November 2008
Assuming the function is perodic with the period T | ||
Fourier Transform
Remember from 10/02 - Fourier Series
If we let
Remember | ||