10/09 - Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 46: Line 46:
|<math>=X(f)\,\!</math>
|<math>=X(f)\,\!</math>
|<math>=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt</math>
|<math>=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt</math>
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle</math>
|<math>=\left \langle x(t) \mid e^{j2\pi ft}\right \rangle_t</math>
|-
|-
|<math>F^{-1}[x(t)]\,\!</math>
|<math>F^{-1}[x(t)]\,\!</math>
|<math>=x(t)\,\!</math>
|<math>=x(t)\,\!</math>
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}dt</math>
|<math>=\int_{-\infty}^{\infty} X(f) e^{j2\pi ft}df</math>
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle</math>
|<math>=\left \langle X(f) \mid e^{-j2\pi ft}\right \rangle_f</math>
|}
|}
==Examples==
==Examples==
Line 57: Line 57:
|-
|-
|<math>F^{-1}[F[x(t)]]\,\!</math>
|<math>F^{-1}[F[x(t)]]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt\right ]e^{j2\pi ft} df</math>
|<math>=</math>
|-
|-
|
|
|<math>=n^2 + 2n + 1</math>
|<math>=\int_{-\infty}^{\infty}X(f) e^{j2\pi ft} df</math>
|-
|
|<math>=x(t)\,\!</math>
|}
|}

Revision as of 14:10, 17 November 2008

Assuming the function is perodic with the period T

Fourier Transform

Remember from 10/02 - Fourier Series

If we let

Remember

Definitions

Examples