HW 05: Difference between revisions
Jump to navigation
Jump to search
(New page: Find the following Fourier Transforms *<math>F[e^{j \omega_0 t}]</math> *<math>F[\cos {\omega_0 t}]\,\!</math> *<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> *<math>F[\sin...) |
No edit summary |
||
Line 4: | Line 4: | ||
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> |
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> |
||
*<math>F[\sin{\omega_0 t}]\,\!</math> |
*<math>F[\sin{\omega_0 t}]\,\!</math> |
||
==Solutions== |
|||
{| border="0" cellpadding="0" cellspacing="0" |
|||
|- |
|||
|<math>F[e^{j \omega_0 t}]</math> |
|||
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty} e^{j (\omega_0-\omega) t}dt</math> |
|||
|- |
|||
| |
|||
|<math>=\delta(\omega_0-\omega)\,\!</math> |
|||
|} |
Revision as of 15:28, 17 November 2008
Find the following Fourier Transforms