HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: Find the following Fourier Transforms *<math>F[e^{j \omega_0 t}]</math> *<math>F[\cos {\omega_0 t}]\,\!</math> *<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> *<math>F[\sin...)
 
No edit summary
Line 4: Line 4:
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
*<math>F[\sin{\omega_0 t}]\,\!</math>
*<math>F[\sin{\omega_0 t}]\,\!</math>

==Solutions==
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>F[e^{j \omega_0 t}]</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|-
|
|<math>=\int_{-\infty}^{\infty} e^{j (\omega_0-\omega) t}dt</math>
|-
|
|<math>=\delta(\omega_0-\omega)\,\!</math>
|}

Revision as of 15:28, 17 November 2008

Find the following Fourier Transforms

Solutions