10/09 - Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
Line 89: Line 89:
<math>x(t)=\int_{-\infty}^{\infty} x(u)\delta(t-u) du</math>
<math>x(t)=\int_{-\infty}^{\infty} x(u)\delta(t-u) du</math>
*When dealing with <math>\omega\,\!</math>, it behaves slightly different than dealing with <math>f\,\!</math>. When dealing with <math>=\int_{-\infty}^{\infty}x(\lambda) \left [ \frac{1}{2\pi} \int_{-\infty}^{\infty}  e^{j(t-\omega) \lambda}d\omega\right ] d\lambda</math>, note that the delta function is <math>\frac{1}{2\pi} \int_{-\infty}^{\infty}  e^{j(t-\omega) \lambda}d\omega</math>. The <math>\frac{1}{2\pi}</math> is tacked onto the front. Thus, when dealing with <math>\omega\,\!</math>, you will often need to multiply it by <math>2\pi\,\!</math> to cancel out the <math>\frac{1}{2\pi}</math>.
*When dealing with <math>\omega\,\!</math>, it behaves slightly different than dealing with <math>f\,\!</math>. When dealing with <math>=\int_{-\infty}^{\infty}x(\lambda) \left [ \frac{1}{2\pi} \int_{-\infty}^{\infty}  e^{j(t-\omega) \lambda}d\omega\right ] d\lambda</math>, note that the delta function is <math>\frac{1}{2\pi} \int_{-\infty}^{\infty}  e^{j(t-\omega) \lambda}d\omega</math>. The <math>\frac{1}{2\pi}</math> is tacked onto the front. Thus, when dealing with <math>\omega\,\!</math>, you will often need to multiply it by <math>2\pi\,\!</math> to cancel out the <math>\frac{1}{2\pi}</math>.
===More properties of the delta function===
<math>\delta(a\,t) = \frac{1}{\left | a \right |}</math>
<math>\delta(\omega)=\delta(2\pi f)=\frac{1}{2\pi}\delta(f)</math>

Revision as of 18:37, 17 November 2008

ej2πnt/Tej2πmt/T =ej2πnt/Tej2πmt/Tdt
=ej2π(nm)t/Tdt
=T/2T/2ej2π(nm)t/Tdt Assuming the function is perodic with the period T
=Tδm,n

Fourier Transform

Remember from 10/02 - Fourier Series

  • αm=1TT/2T/2x(t)ej2πmt/Tdt
  • x(t)=x(t+T)=n=αmej2πm/T

If we let T

1T df
nT f Remember f=2πnT
T
n=1T ()df

Definitions

F[x(t)] =X(f) =x(t)ej2πftdt =x(t)ej2πftt
F1[x(t)] =x(t) =X(f)ej2πftdf =X(f)ej2πftf

Examples

ej2πftej2πfλdf =ej2πftej2πftf =δ(tλ)
ej2πtfej2πtf0dt =ej2πtfej2πtf0t =δ(ff0)
F1[F[x(t)]] =[x(λ)ej2πfλdλ]ej2πftdf =X(f)ej2πftdf =x(t)
=x(λ)ej2πf(tλ)dfdλ =x(λ)δ(tλ)dλ =x(t)
=[x(λ)ejωλdλ]ejωt12πdω =x(λ)[12πej(tω)λdω]dλ =x(λ)δ(tω)dλ =x(t)

Sifting property of the delta function

The dirac delta function is defined as any function, denoted as δ(tu), that works for all variables that makes the following equation true: x(t)=x(u)δ(tu)du

  • When dealing with ω, it behaves slightly different than dealing with f. When dealing with =x(λ)[12πej(tω)λdω]dλ, note that the delta function is 12πej(tω)λdω. The 12π is tacked onto the front. Thus, when dealing with ω, you will often need to multiply it by 2π to cancel out the 12π.

More properties of the delta function

δ(at)=1|a|

δ(ω)=δ(2πf)=12πδ(f)