HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 24: Line 24:
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t}\right ] dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right ] dt</math>
|-
|-
|
|
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|<math>=\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=2\pi\delta(\omega_0-\omega) + 2\pi\delta(\omega_0+\omega)\,\!</math>
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>F[\sin{\omega_0 t}]\,\!</math>
Line 39: Line 39:
|-
|-
|
|
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )2je^{-j \omega t} dt</math>
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math>
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math>
|-
|-
|
|
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|<math>=\frac{\pi}{j}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=2\pi\delta(\omega_0-\omega) - 2\pi\delta(\omega_0+\omega)\,\!</math>
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
|<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>

Revision as of 16:03, 23 November 2008

Find the following Fourier Transforms

Solutions

Is the last problem done correctly?