Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0}e^{-j2 \pi ft}\,dt = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi f(t_{0}-t)}\,dt</math> | <math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0}e^{-j2 \pi ft}\,dt = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi f(t_{0}-t)}\,dt</math> | ||
<br/> | But recall that, <math>e^{j2 \pi f(t_{0}-t)} \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math> | ||
Because of this definition, our problem has now been simplified significantly: <br/> | |||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)</math> <br/> | |||
Therefore, | |||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math> | |||
---- | ---- |
Revision as of 15:12, 16 October 2009
Max Woesner
Find
Recall , so
Also recall ,so
Now
So
Nick Christman
Find
To begin, we know that
But recall that,
Because of this definition, our problem has now been simplified significantly:
Therefore,