Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
Max.Woesner (talk | contribs) No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
---- |
---- |
||
[[Joshua Sarris|<b><u>Joshua Ssarris</u></b>]]<br><br> |
|||
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>''' |
|||
Recall |
|||
<math> w_0 = 2\pi f_0\!</math>, |
|||
so expanding we have, |
|||
<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br> |
|||
Also recall |
|||
<math> sin(\theta) = \frac{1}{j2}(e^{j\theta} + e^{-j\theta})\!</math>, |
|||
so we can convert to exponentials. |
|||
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> |
|||
Now integrating gives us, |
|||
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)+ \frac{1}{j2}G(f+f_0)\!</math><br> |
|||
So we now have the identity, |
|||
<math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)+ G(f+f_0)]\!</math> |
|||
orr rather |
|||
<math>\mathcal{F}[cos(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)- G(f+f_0)]\!</math> |
Revision as of 17:07, 18 October 2009
Max Woesner
Find
Recall , so
Also recall ,so
Now
So
Nick Christman
Find
To begin, we know that
But recall that
Because of this definition, our problem has now been simplified significantly:
Therefore,
Joshua Ssarris
Find
Recall
,
so expanding we have,
Also recall ,
so we can convert to exponentials.
Now integrating gives us,
So we now have the identity,
orr rather