Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:


----
----
[[Joshua Sarris|<b><u>Joshua Ssarris</u></b>]]<br><br>
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''
Recall
<math> w_0 = 2\pi f_0\!</math>,
so expanding we have,
<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall
<math> sin(\theta) = \frac{1}{j2}(e^{j\theta} + e^{-j\theta})\!</math>,
so we can convert to exponentials.
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Now integrating gives us,
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)+ \frac{1}{j2}G(f+f_0)\!</math><br>
So we now have the identity,
<math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)+ G(f+f_0)]\!</math>
orr rather
<math>\mathcal{F}[cos(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)- G(f+f_0)]\!</math>

Revision as of 18:07, 18 October 2009

Max Woesner

Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


Nick Christman

Find [10tg(t)ej2πft0]

To begin, we know that

[10tg(t)ej2πft0]=10tg(t)ej2πft0ej2πftdt=10tg(t)ej2πf(t0t)dt

But recall that ej2πf(t0t)δ(t0t) or δ(tt0)


Because of this definition, our problem has now been simplified significantly:

[10tg(t)ej2πft0]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0]=10t0g(t0)



Joshua Ssarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθ+ejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=1j2G(ff0)+1j2G(f+f0)


So we now have the identity,

[cos(w0t)g(t)]=1j2[G(ff0)+G(f+f0)]

orr rather

[cos(w0t)g(t)]=12j[G(ff0)G(f+f0)]