Laplace transforms:Series RLC circuit: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: ==Laplace Transform Example: Series RLC Circuit== ===Problem=== Given a series RLC circuit with <math>R=10 Ω</math>, <math>L=0.08 H</math>, and <math>C=10^{-5} F</math>, having power sour...
 
Line 31: Line 31:


<math>I(s)=\dfrac{1.0016-1.605*10^{-8}s}{0.08s^2+0.2s+20000}+\dfrac{2.046*10^{-7}s-.02003}{s^2+400}</math>
<math>I(s)=\dfrac{1.0016-1.605*10^{-8}s}{0.08s^2+0.2s+20000}+\dfrac{2.046*10^{-7}s-.02003}{s^2+400}</math>
<math>\Rightarrow I(s)=\dfrac{6.24*10^7-s}{4.98*10^6s^2+1.25*10^7s+1.25*10^{12}}+\dfrac{

Revision as of 20:26, 19 October 2009

Laplace Transform Example: Series RLC Circuit

Problem

Given a series RLC circuit with Failed to parse (syntax error): {\displaystyle R=10 Ω} , L=0.08H, and C=105F, having power source v(t)=50cos(20t), find an expression for i(t) if i(0)=0A and vc(0)=0V.

Solution

We begin with the general formula for voltage drops around the circuit:

v(t)=Ri+Ldidt+1Cidt

Substituting numbers, we get

50cos(20t)=10i+0.08didt+105idt

cos(20t)=0.2i+0.0016didt+20000idt

Now, we take the Laplace Transform and get

ss2+202=0.2I+0.08[sIi(0)]+20000Is

Using the fact that i(0)=0A, we get

ss2+400=0.2I+0.08sI+20000Is

s2s2+400=0.2sI+0.08s2I+20000I

s2s2+400=(0.08s2+0.2s+20000)I

I(s)=s2(s2+400)(0.08s2+0.2s+20000)

Using partial fraction decomposition, we find that

I(s)=1.00161.605*108s0.08s2+0.2s+20000+2.046*107s.02003s2+400

<math>\Rightarrow I(s)=\dfrac{6.24*10^7-s}{4.98*10^6s^2+1.25*10^7s+1.25*10^{12}}+\dfrac{