Laplace transforms:Series RLC circuit: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 1: Line 1:
==Laplace Transform Example: Series RLC Circuit==
==Laplace Transform Example: Series RLC Circuit==
===Problem===
===Problem===
Given a series RLC circuit with <math>R=10 Ω</math>, <math>L=0.08 H</math>, and <math>C=10^{-5} F</math>, having power source <math>v(t)=50cos(20t)</math>, find an expression for <math>i(t)</math> if <math>i(0)=0 A</math> and <math>v_c(0)=0 V</math>.
Given a series RLC circuit with <math>R=10 Ohms</math>, <math>L=0.1 H</math>, and <math>C=10^{-5} F</math>, having power source <math>v(t)=10cos(20t)</math>, find an expression for <math>i(t)</math> if <math>i(0)=0 A</math> and <math>v_c(0)=0 V</math>.


===Solution===
===Solution===
Line 10: Line 10:
Substituting numbers, we get
Substituting numbers, we get


<math>50cos(20t)=10i+0.08\dfrac{di}{dt}+10^{5}\int{i dt}</math>
<math>10cos(20t)=10i+0.1\dfrac{di}{dt}+10^{5}\int{i dt}</math>


<math>\Rightarrow cos(20t)=0.2i+0.0016\dfrac{di}{dt}+20000\int{idt}</math>
<math>\Rightarrow cos(20t)=i+0.01\dfrac{di}{dt}+10000\int{idt}</math>


Now, we take the Laplace Transform and get
Now, we take the Laplace Transform and get


<math>\dfrac{s}{s^2+20^2}=0.2I+0.08[sI-i(0)]+20000\dfrac{I}{s}</math>
<math>\dfrac{s}{s^2+20^2}=I+0.01[sI-i(0)]+10000\dfrac{I}{s}</math>


Using the fact that <math>i(0)=0A</math>, we get
Using the fact that <math>i(0)=0A</math>, we get


<math>\dfrac{s}{s^2+400}=0.2I+0.08sI+20000\dfrac{I}{s}</math>
<math>\dfrac{s}{s^2+400}=I+0.01sI+10000\dfrac{I}{s}</math>


<math>\Rightarrow \dfrac{s^2}{s^2+400}=0.2sI+0.08s^2I+20000I</math>
<math>\Rightarrow \dfrac{s^2}{s^2+400}=sI+0.01s^2I+10000I</math>


<math>\Rightarrow \dfrac{s^2}{s^2+400}=(0.08s^2+0.2s+20000)I</math>
<math>\Rightarrow \dfrac{s^2}{s^2+400}=(0.01s^2+s+10000)I</math>


<math>\Rightarrow I(s)=\dfrac{s^2}{(s^2+400)(0.08s^2+0.2s+20000)}</math>
<math>\Rightarrow I(s)=\dfrac{s^2}{(s^2+400)(0.01s^2+s+10000)}</math>


Using partial fraction decomposition, we find that
Using partial fraction decomposition, we find that


<math>I(s)=\dfrac{1.0016-1.605*10^{-8}s}{0.08s^2+0.2s+20000}+\dfrac{2.046*10^{-7}s-.02003}{s^2+400}</math>
<math>I(s)=\dfrac{1.0004-4.003*10^{-8}s}{0.01s^2+s+10000}+\dfrac{4.003*10^{-6}s-0.04002}{s^2+400}</math>


<math>\Rightarrow I(s)=\dfrac{6.24*10^7-s}{4.98*10^6s^2+1.25*10^7s+1.25*10^{12}}+\dfrac{
<math>\Rightarrow I(s)=\dfrac{100.04-4.003*10^{-6}s}{s^2+100s+1000000}+\dfrac{4.003*10^{-6}s-0.04002}{s^2+400}</math>
 
<math>\Rightarrow I(s)=\dfrac{100.04-4.003*10^{-6}s}{(s+50)^2+997500}+\dfrac{4.003*10^{-6}s-0.04002}{s^2+400}</math>
 
<math>\Rightarrow I(s)=\dfrac{100.038}{(s+50)^2+(50\sqrt{399})^2}-\dfrac{4.003*10^{-6}s+.002}{(s+50)^2+(50\sqrt{399})^2}+\dfrac{4.003*10^{-6}s}{s^2+20^2}-\dfrac{0.04002}{s^2+20^2}</math>
 
<math> \Rightarrow I(s)=\dfrac{10.038}{50\sqrt{399}}\dfrac{50\sqrt{399}}{(s+50)^2+(50\sqrt{399})^2}-4.003*10^{-6}\dfrac{s+50}{(s+50)^2+(50\sqrt{399})^2}+4.003*10^{-6}\dfrac{s}{s^2+20^2}-\dfrac{0.04002}{20}\dfrac{20}{s^2+20^2}</math>
 
Finally, we take the inverse Laplace transform to obtain
 
<math> i(t)=0.01e^{-50t}sin(998.8t)-(4.003*10^{-6})e^{-50t}cos(998.8t)+(4.003*10^{-6})cos(20t)-0.002sin(20t) \,</math>
 
which is our answer.

Revision as of 21:11, 19 October 2009

Laplace Transform Example: Series RLC Circuit

Problem

Given a series RLC circuit with R=10Ohms, L=0.1H, and C=105F, having power source v(t)=10cos(20t), find an expression for i(t) if i(0)=0A and vc(0)=0V.

Solution

We begin with the general formula for voltage drops around the circuit:

v(t)=Ri+Ldidt+1Cidt

Substituting numbers, we get

10cos(20t)=10i+0.1didt+105idt

cos(20t)=i+0.01didt+10000idt

Now, we take the Laplace Transform and get

ss2+202=I+0.01[sIi(0)]+10000Is

Using the fact that i(0)=0A, we get

ss2+400=I+0.01sI+10000Is

s2s2+400=sI+0.01s2I+10000I

s2s2+400=(0.01s2+s+10000)I

I(s)=s2(s2+400)(0.01s2+s+10000)

Using partial fraction decomposition, we find that

I(s)=1.00044.003*108s0.01s2+s+10000+4.003*106s0.04002s2+400

I(s)=100.044.003*106ss2+100s+1000000+4.003*106s0.04002s2+400

I(s)=100.044.003*106s(s+50)2+997500+4.003*106s0.04002s2+400

I(s)=100.038(s+50)2+(50399)24.003*106s+.002(s+50)2+(50399)2+4.003*106ss2+2020.04002s2+202

I(s)=10.0385039950399(s+50)2+(50399)24.003*106s+50(s+50)2+(50399)2+4.003*106ss2+2020.040022020s2+202

Finally, we take the inverse Laplace transform to obtain

i(t)=0.01e50tsin(998.8t)(4.003*106)e50tcos(998.8t)+(4.003*106)cos(20t)0.002sin(20t)

which is our answer.