Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 49: Line 49:
so expanding we have,
so expanding we have,


<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>


Also recall  
Also recall  
Line 65: Line 65:
So we now have the identity,
So we now have the identity,


<math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)+ G(f+f_0)]\!</math>
<math>\mathcal{F}[sin(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)+ G(f+f_0)]\!</math>


orr rather
or rather


<math>\mathcal{F}[cos(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)- G(f+f_0)]\!</math>
<math>\mathcal{F}[sin(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)- G(f+f_0)]\!</math>


[[Fourier Transform Property review|Reviewed by Max]]
[[Fourier Transform Property review|Reviewed by Max]]

Revision as of 20:05, 20 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]

2. Find [g(t)h*(t)dt]
Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

So [g(t)h*(t)dt]=G(f)H*(f)df

Someone please review these!


Nick Christman

Find [10tg(t)ej2πft0]

To begin, we know that

[10tg(t)ej2πft0]=10tg(t)ej2πft0ej2πftdt=10tg(t)ej2πf(t0t)dt

But recall that ej2πf(t0t)δ(t0t) or δ(tt0)


Because of this definition, our problem has now been simplified significantly:

[10tg(t)ej2πft0]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0]=10t0g(t0)



Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθ+ejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=1j2G(ff0)+1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)+G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(ff0)G(f+f0)]

Reviewed by Max