HW5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: Here is Max's Fourier Property: <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>''' Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(...
 
No edit summary
Line 1: Line 1:
Here is Max's Fourier Property:  
Here is Max's Fourier Property:  
Found [[Fourier Transform Properties|here]].


<math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
<math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''

Revision as of 23:55, 28 October 2009

Here is Max's Fourier Property: Found here.

[cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


After reviewing the property both the math and the logical progression are valid. Therefore I deem this property to be true. -Joshua Sarris.