Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
1. '''Find <math>\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt]</math><br/>'''
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>'''


To begin, we know that<br/>
To begin, we know that<br/>
Line 51: Line 51:


<math>
<math>
\mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>  
</math>  
Line 58: Line 58:
Therefore,
Therefore,


<math> mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>
<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>





Revision as of 13:40, 31 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


reviewed by Joshua Sarris


2. Find [g(t)h*(t)dt]
Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

So [g(t)h*(t)dt]=G(f)H*(f)df

Reviewed by Nick Christman


Nick Christman

1. Find [10tg(t)ej2πft0dt]

To begin, we know that

[10tg(t)ej2πft0dt]=(10tg(t)ej2πft0dt)ej2πftdt

After some factoring and combinting of like terms we get:


[10tg(t)ej2πft0dt]=(10tg(t)dt)ej2πf(t0t)dt

But recall that ej2πf(t0t)dtδ(t0t) or δ(tt0)


Because of this definition (and some "math magic") our problem has been simplified significantly:

[10tg(t)ej2πft0dt]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0dt]=10t0g(t0)


2.



Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0tej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0tej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt12ej2π(f+f0)tg(t)dt=1j2G(ff0)1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(f+f0)+G(ff0)]

Reviewed by Max