Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> | [[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> | ||
1. '''Find <math>\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt]</math><br/>''' | 1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>''' | ||
To begin, we know that<br/> | To begin, we know that<br/> | ||
Line 51: | Line 51: | ||
<math> | <math> | ||
\mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] | \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] | ||
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) | = \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) | ||
</math> | </math> | ||
Line 58: | Line 58: | ||
Therefore, | Therefore, | ||
<math> mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> | <math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> | ||
Revision as of 13:40, 31 October 2009
Some properties to choose from if you are having difficulty....
Max Woesner
1. Find
Recall , so
Also recall ,so
Now
So
reviewed by Joshua Sarris
2. Find
Recall
Similarly,
So
Now
Note that
So
Reviewed by Nick Christman
Nick Christman
1. Find
To begin, we know that
After some factoring and combinting of like terms we get:
But recall that
Because of this definition (and some "math magic") our problem has been simplified significantly:
Therefore,
2.
Joshua Sarris
Find
Recall
,
so expanding we have,
Also recall ,
so we can convert to exponentials.
Now integrating gives us,
So we now have the identity,
or rather