Homework Four: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
---- | ---- | ||
'''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>''' | [[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> | ||
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>''' | |||
To begin, we know that<br/> | To begin, we know that<br/> | ||
<math> \mathcal{F}[ | <math> | ||
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] | |||
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt | |||
</math> | |||
<br/> | |||
After some factoring and combinting of like terms we get: | |||
<br/> | |||
<math> | |||
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] | |||
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt | |||
</math> | |||
<br/> | |||
But recall that | |||
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math> | |||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)</math> <br/> | |||
Because of this definition (and some "math magic") our problem has been simplified significantly: <br/> | |||
<math> | |||
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] | |||
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) | |||
</math> | |||
<br/> | |||
Therefore, | Therefore, | ||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math> | <math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> |
Revision as of 13:41, 31 October 2009
Nick Christman
1. Find
To begin, we know that
After some factoring and combinting of like terms we get:
But recall that
Because of this definition (and some "math magic") our problem has been simplified significantly:
Therefore,