Homework Six: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<br/> | <br/> | ||
(b)If <math> S(0) \neq 0 < | (b)If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? | ||
<br/> | <br/> | ||
(c) | (c) Do another property on the Wiki and get it reviewed (i.e. review a second property) -- [[Fourier Transform Properties]] | ||
'''Find <math>\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right]</math><br/>''' | |||
-- Using the above definition of ''complex modulation'' and the definition from class of a ''time delay'' (a.k.a "the slacker function"), I will attempt to show a hybrid of the two... | |||
<br/> | |||
By definition we know that: | |||
<math> | |||
\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt | |||
</math> | |||
Rearranging terms we get: | |||
<math> | |||
\int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt | |||
</math> | |||
<br/> | |||
Now lets make the substitution <math>\lambda = t-t_{0} \rightarrow t = \lambda + t_{0}</math>. | |||
<br/> | |||
This leads us to: | |||
<math> | |||
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt | |||
</math> | |||
After some simplification and rearranging terms, we get: | |||
<math> | |||
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt | |||
</math> | |||
Rearranging the terms yet again, we get: | |||
<math> | |||
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } \,dt \right] | |||
</math> | |||
We know that the exponential in terms of <math>\displaystyle t_{0}</math> is simply a constant and because of the Fourier Property of ''complex modualtion'', we finally get: | |||
<math> | |||
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(f-f_{0})e^{-j2 \pi (f-f_{0})t_{0}} | |||
</math> | |||
<br/> |
Revision as of 16:03, 31 October 2009
Perform the following tasks:
(a) Show
(b)If can you find in terms of ?
(c) Do another property on the Wiki and get it reviewed (i.e. review a second property) -- Fourier Transform Properties
Find
-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
By definition we know that:
Rearranging terms we get:
Now lets make the substitution .
This leads us to:
After some simplification and rearranging terms, we get:
Rearranging the terms yet again, we get:
We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get: