3 - The Game Simplified: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: Lets look at what happens if our signals are not periodic. We can achieve this by setting our period T to infinity such that <math>\lim_{T \to \infty}\sum_{n=-\infty}^\infty (1/T\int_{-T/2...
 
No edit summary
 
Line 5: Line 5:
1/T <math>\Longrightarrow df \!</math> <br>
1/T <math>\Longrightarrow df \!</math> <br>
n/T <math>\Longrightarrow df \!</math> <br>
n/T <math>\Longrightarrow df \!</math> <br>
<math> \sum_{n=-\infty} ^\infty
<math> \sum_{n=-\infty} ^\infty 1/T \Longrightarrow \int_{-\infty}^\infty ()df \!</math> <br>
<math> \alpha_n \Longrightarrow X(f) \!</math> <br>
this leads us to the equation <br>
<math> x(t) = \lim_{T \to \infty}\sum_{n=-\infty}^\infty (1/T\int_{-T/2}^{T/2} x(t^')e^{-j2\pi nt^'/T}dt^')e^{j2\pi nt/T},\!</math> <br>
and if we replace n/T with f and take the integral with respect to f  we get <br>
<math> x(t) = \int_{-\infty}^\infty (\int_{-\infty}^\infty x(t^')e^{-j2\pi ft^'}dt^')e^{j2\pi ft}df,\!</math> <br>
where <math> \int_{-\infty}^\infty x(t^')e^{-j2\pi ft^'}dt^' = X(f)\!</math> <br>
simplifying the equation to <br>
<math> x(t) = \int_{-\infty}^\infty X(f) e^{j2\pi ft}df = <X(f)|e^{j2\pi ft}> \!</math> = '''Inverse Fourier Transform''' <br> and <br>
<math> X(f) = \int_{-\infty}^\infty x(t)e^{-j2 \pi ft}dt = <x(t)|e^{j2 \pi ft}> = \!</math>'''Fourier Transform''' <br>
Now using the x(t) equation and rearranging it gives us
<math> x(t) = \int_{-\infty}^\infty (\int_{-\infty}^\infty x(t^')e^{-j2\pi ft^'}dt^')e^{j2\pi ft}df = \int_{-\infty}^\infty x(t^') (\int_{-\infty}^\infty e^{j2\pi f(t-t^')}df)dt^' \!</math> <br>
where <br>
<math> e^{j2\pi f(t-t^')} = \delta(t - t^')\!</math> <br>
Similarly for X(f) <br>
<math> X(f) = \int_{-\infty}^\infty (\int_{-\infty}^\infty X(f^')e^{j2\pi f^'t}df^')e^{-j2\pi ft}dt = \int_{-\infty}^\infty X(f^') (\int_{-\infty}^\infty e^{j2\pi t(f^'-f)}dt)df^' \!</math> <br>
where <br>
<math> e^{j2\pi t(f^'-f)} = \delta(f^' - f) = \delta(f - f^') \!</math> <br>
 
This works out nicely for us in both the time and frequency domain because this give us the inpulse function for both where they are non-zero only when t = t' or f = f' depending on which equation you use

Latest revision as of 21:25, 2 November 2009

Lets look at what happens if our signals are not periodic. We can achieve this by setting our period T to infinity such that limTn=(1/TT/2T/2x(t')ej2πnt'/Tdt')ej2πnt/T,
where
1/TT/2T/2x(t')ej2πnt'/Tdt'=αn
first we need to remove the restiction x(t) = x(t + T) by following these steps.
1/T df
n/T df
n=1/T()df
αnX(f)
this leads us to the equation
x(t)=limTn=(1/TT/2T/2x(t')ej2πnt'/Tdt')ej2πnt/T,
and if we replace n/T with f and take the integral with respect to f we get
x(t)=(x(t')ej2πft'dt')ej2πftdf,
where x(t')ej2πft'dt'=X(f)
simplifying the equation to
x(t)=X(f)ej2πftdf=<X(f)|ej2πft> = Inverse Fourier Transform
and
X(f)=x(t)ej2πftdt=<x(t)|ej2πft>=Fourier Transform
Now using the x(t) equation and rearranging it gives us x(t)=(x(t')ej2πft'dt')ej2πftdf=x(t')(ej2πf(tt')df)dt'
where
ej2πf(tt')=δ(tt')
Similarly for X(f)
X(f)=(X(f')ej2πf'tdf')ej2πftdt=X(f')(ej2πt(f'f)dt)df'
where
ej2πt(f'f)=δ(f'f)=δ(ff')

This works out nicely for us in both the time and frequency domain because this give us the inpulse function for both where they are non-zero only when t = t' or f = f' depending on which equation you use