Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
1.  '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
1.  '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br><br>'''
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt \ + \ \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0) \ + \ \frac{1}{2}G(f+f_0)\!</math><br><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>


Line 12: Line 12:




2.  '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br>'''
2.  '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br><br>'''
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br>
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br>
Line 18: Line 18:
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!</math><br><br>
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!</math><br><br>
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br>
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
<i>Added step per Nick's suggestion</i><br><br>
Substituting gives us <math>\int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^{''}-f^') df^{''} df^' \!</math><br><br>
And <math> \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^{''}-f^') df^{''} df^'  = \int_{-\infty}^{\infty}G(f^')H^*(f^')df^' \!</math><br><br>
Since <math> f^' \!</math> is a simply a dummy variable, we can conclude that: <br><br>
<math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>


"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"

Revision as of 09:41, 3 November 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]

Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)

So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


reviewed by Joshua Sarris


2. Find [g(t)h*(t)dt]

Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

Added step per Nick's suggestion

Substituting gives us G(f')H*(f')ej2π(f'f')tdtdf'df'=G(f')H*(f')δ(f'f')df'df'

And G(f')H*(f')δ(f'f')df'df'=G(f')H*(f')df'

Since f' is a simply a dummy variable, we can conclude that:

[g(t)h*(t)dt]=G(f)H*(f)df

"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"

Example: a1a2b1b2X(s)Y(s)δ(ss)dsds=a1a2X(s)Y(s)ds

Reviewed by Nick Christman


Nick Christman

Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.

1. Find [g(t)ej2πf0t]

This is a fairly straightforward property and is known as complex modulation

[g(t)ej2πf0t]=[g(t)ej2πf0t]ej2πftdt

Combining terms, we get:

[g(t)ej2πf0t]ej2πftdt=g(t)ej2π(ff0)tdt

Now let's make the following substitution θ=ff0

This now gives us a surprisingly familiar function:

g(t)ej2π(ff0)tdt=g(t)ej2πθtdt

This looks just like G(θ)!

We can now conclude that:

[g(t)ej2πf0t]=G(θ)=G(ff0)

PLEASE ENTER PEER REVIEW HERE



2. Find [g(tt0)ej2πf0t]

-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...

By definition we know that:

[g(tt0)ej2πf0t]=[g(tt0)ej2πf0t]ej2πftdt

Rearranging terms we get:

[g(tt0)ej2πf0t]ej2πftdt=g(tt0)ej2π(ff0)tdt

Now lets make the substitution λ=tt0t=λ+t0.
This leads us to:

g(tt0)ej2π(ff0)tdt=g(λ)ej2π(ff0)(λ+t0)dt

After some simplification and rearranging terms, we get:

g(λ)ej2π(ff0)(λ+t0)dt=g(λ)ej2π(ff0)λej2π(ff0)t0dt

Rearranging the terms yet again, we get:

g(λ)ej2π(ff0)λej2π(ff0)t0dt=ej2π(ff0)t0[g(λ)ej2π(ff0)λdt]

We know that the exponential in terms of t0 is simply a constant and because of the Fourier Property of complex modualtion, we finally get:

[g(t)ej2πf0t]=G(ff0)ej2π(ff0)t0


PLEASE ENTER PEER REVIEW HERE




Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0tej2πf0t]g(t)ej2πftdt

Now integrating gives us, (** I believe you are missing 'j' in the denominator of the second term)

1j2[ej2πf0tej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt12ej2π(f+f0)tg(t)dt=1j2G(ff0)1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(f+f0)+G(ff0)]

Reviewed by Max

Also reviewed by Nick Christman -- Looks good. I found one typo (I think), see **. Good job Josh!