|
|
Line 2: |
Line 2: |
|
|
|
|
|
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br> |
|
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br> |
|
1. '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>''' |
|
1. '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br><br>''' |
|
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br> |
|
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br><br> |
|
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> |
|
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br><br> |
|
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br> |
|
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt \ + \ \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0) \ + \ \frac{1}{2}G(f+f_0)\!</math><br><br> |
|
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br> |
|
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br> |
|
|
|
|
Line 12: |
Line 12: |
|
|
|
|
|
|
|
|
|
2. '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br>''' |
|
2. '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br><br>''' |
|
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br> |
|
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br> |
|
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br> |
|
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br> |
Line 18: |
Line 18: |
|
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!</math><br><br> |
|
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!</math><br><br> |
|
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br> |
|
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br> |
|
|
<i>Added step per Nick's suggestion</i><br><br> |
⚫ |
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br> |
|
|
|
Substituting gives us <math>\int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^{''}-f^') df^{''} df^' \!</math><br><br> |
|
|
And <math> \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^{''}-f^') df^{''} df^' = \int_{-\infty}^{\infty}G(f^')H^*(f^')df^' \!</math><br><br> |
|
|
Since <math> f^' \!</math> is a simply a dummy variable, we can conclude that: <br><br> |
|
⚫ |
<math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br> |
|
|
|
|
|
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!" |
|
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!" |
Some properties to choose from if you are having difficulty....
Max Woesner
1. Find
Recall , so
Also recall ,so
Now
So
reviewed by Joshua Sarris
2. Find
Recall
Similarly,
So
Now
Note that
Added step per Nick's suggestion
Substituting gives us
And
Since is a simply a dummy variable, we can conclude that:
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"
Example:
Reviewed by Nick Christman
Nick Christman
Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
PLEASE ENTER PEER REVIEW HERE
2. Find
-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
By definition we know that:
Rearranging terms we get:
Now lets make the substitution .
This leads us to:
After some simplification and rearranging terms, we get:
Rearranging the terms yet again, we get:
We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get:
PLEASE ENTER PEER REVIEW HERE
Joshua Sarris
Find
Recall
,
so expanding we have,
Also recall
,
so we can convert to exponentials.
Now integrating gives us, ( I believe you are missing 'j' in the denominator of the second term)
So we now have the identity,
or rather
Reviewed by Max
Also reviewed by Nick Christman
-- Looks good. I found one typo (I think), see . Good job Josh!