Homework Four: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>'''
1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>'''


This is a fairly straightforward property and is known as ''complex modulation''<br/>
To begin, we know that<br/>


<math>
<math>
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
</math>
</math>
<br/>


Combining terms, we get:
After some factoring and combinting <math> \Longleftarrow </math> "combining-Kevin" of like terms we get:


<br/>
<math>
<math>
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
</math>
</math>
<br/>
<br/>


Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math>
But recall that
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>


This now gives us a surprisingly familiar function:

Because of this definition (and some "math magic") our problem has been simplified significantly: <br/>


<math>
<math>
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt
</math>
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>
<br/>
<br/>


This looks just like <math> \displaystyle G(\theta )</math>!
Therefore,


We can now conclude that:
<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>
<br/>

<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0})
</math>
<br>
<br>

Other than the one typo looks good - Kevin
Looks good - Kevin

Latest revision as of 08:36, 8 November 2009

Fourier Transform Properties


Nick Christman

1. Find

This is a fairly straightforward property and is known as complex modulation

Combining terms, we get:


Now let's make the following substitution

This now gives us a surprisingly familiar function:


This looks just like !

We can now conclude that:


Looks good - Kevin