Homework Four: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> |
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> |
||
1. '''Find <math>\mathcal{F} \left[ |
1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>''' |
||
This is a fairly straightforward property and is known as ''complex modulation''<br/> |
|||
To begin, we know that<br/> |
|||
<math> |
<math> |
||
\mathcal{F} \left[\int_{- \infty}^{\infty} |
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt |
||
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt |
|||
</math> |
</math> |
||
⚫ | |||
Combining terms, we get: |
|||
After some factoring and combinting <math> \Longleftarrow </math> "combining-Kevin" of like terms we get: |
|||
<br/> |
|||
<math> |
<math> |
||
\ |
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt |
||
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt |
|||
</math> |
</math> |
||
<br/> |
<br/> |
||
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math> |
|||
But recall that |
|||
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math> |
|||
This now gives us a surprisingly familiar function: |
|||
Because of this definition (and some "math magic") our problem has been simplified significantly: <br/> |
|||
<math> |
<math> |
||
\ |
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt |
||
⚫ | |||
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) |
|||
⚫ | |||
<br/> |
<br/> |
||
This looks just like <math> \displaystyle G(\theta )</math>! |
|||
Therefore, |
|||
We can now conclude that: |
|||
<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> |
|||
⚫ | |||
<math> |
|||
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0}) |
|||
</math> |
|||
<br> |
<br> |
||
Other than the one typo looks good - Kevin |
|||
Looks good - Kevin |
Latest revision as of 08:36, 8 November 2009
Nick Christman
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
Looks good - Kevin