Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 15: Line 15:


:<math>k3=100 N/m\,</math>
:<math>k3=100 N/m\,</math>
State Equations
<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
0&0&0&0 \\
0&0&0&1 \\
0&0&0&0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}
\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}
</math>
Eigenmodes
Written by: Andrew Hellie

Revision as of 14:43, 25 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=10kg
m2=15kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100000000010000][x1x˙1x2x˙2]+[0000000000000000][0000]

Eigenmodes


Written by: Andrew Hellie