Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 59: Line 59:


</math>
</math>
With the numbers...
<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}
\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}
</math>


Eigenmodes
Eigenmodes

Revision as of 15:41, 25 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=15kg
m2=15kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)15kg0100N/m15kg00001100N/m15kg0(250N/m)15kg0][x1x˙1x2x˙2]+[0000000000000000][0000]


Eigenmodes

There are three eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference
3) m1 and m2 oscillating at different times


Solve Using the Matrix Exponential



Written by: Andrew Hellie