Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 1: Line 1:
===Problem Statement===
===Problem Statement===


Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system.
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system.'''


   [[Image:Coupled_Oscillator.jpg]]
   [[Image:Coupled_Oscillator.jpg]]
Initial Conditions:
'''Initial Conditions:'''


:<math>m_1= 15 kg\,</math>
:<math>m_1= 15 kg\,</math>
Line 16: Line 16:
:<math>k3=100 N/m\,</math>
:<math>k3=100 N/m\,</math>


State Equations
'''State Equations'''


<math>
<math>
Line 60: Line 60:
</math>
</math>


With the numbers...
'''With the numbers...'''




Line 91: Line 91:




Eigenmodes
'''Eigenmodes'''


:There are three eigenmodes for the system
:There are three eigenmodes for the system
Line 102: Line 102:




Solve Using the Matrix Exponential
'''Solve Using the Matrix Exponential'''
 




<math>e^{At}=\mathcal{L}^{-1}\left\{(SI-A)^{-1}\right\},\,</math>


Written by: Andrew Hellie
Written by: Andrew Hellie

Revision as of 20:20, 30 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=15kg
m2=15kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)15kg0100N/m15kg00001100N/m15kg0(250N/m)15kg0][x1x˙1x2x˙2]


Eigenmodes

There are three eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential


eAt=1{(SIA)1},

Written by: Andrew Hellie