Laplace transforms: Simple Electrical Network: Difference between revisions
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
Substituting numbers into the equations, we have | Substituting numbers into the equations, we have | ||
<math>0.5\frac{di_1}{dt}+ | <math>0.5\frac{di_1}{dt}+80i_2=50</math> | ||
<math> | <math>80(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math> | ||
Applying the Laplace transform to each equation gives | Applying the Laplace transform to each equation gives | ||
<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+ | <math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+80\mathcal{L}\left\{i_2\right\}=50</math> | ||
<math>0. | <math>0.008(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math> | ||
<math>\Rightarrow\frac{1}{2}sI_1(s)+ | <math>\Rightarrow\frac{1}{2}sI_1(s)+80I_2(s)=\frac{50}{s}</math> | ||
<math>- | <math>-125I_1(s)+[s+125]I_2(s)=0</math> | ||
Solving for <math>\ | Solving for <math>I_1(s)</math> gives | ||
<math>I_s(s)= \frac{100s+12500}{s(s^2+125s+20000)}</math> |
Revision as of 16:01, 1 December 2009
Problem Statement
Using the formulas
Solve the system when V0 = 50 V, L = 0.5 h, R = 80 Ω, C = 10-4 f, and the currents are initially zero.
Solution
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero. Substituting numbers into the equations, we have
Applying the Laplace transform to each equation gives
Solving for gives