Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 7: Line 7:


==Solution==
==Solution==
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Substituting numbers into the equations, we have


<math>0.5\frac{di_1}{dt}+80i_2=50</math>
<math>4\frac{di_1}{dt}+20i_2=50</math>


<math>80(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>
<math>20(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>


Applying the Laplace transform to each equation gives
Applying the Laplace transform to each equation gives


<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+80\mathcal{L}\left\{i_2\right\}=50</math>
<math>4(s\mathcal{L}\left\{i_1\right\}-i_1(0))+20\mathcal{L}\left\{i_2\right\}=50</math>


<math>0.008(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>
<math>\Rightarrow4sI_1(s)+20I_2(s)=\frac{50}{s}</math>


<math>\Rightarrow\frac{1}{2}sI_1(s)+80I_2(s)=\frac{50}{s}</math>
<math>0.005(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>


<math>-125I_1(s)+[s+125]I_2(s)=0</math>
<math>\Rightarrow-500I_1(s)+[s+500]I_2(s)=0</math>


Solving for <math>I_2(s)</math>
Solving for <math>I_2(s)</math>


<math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}</math>
<math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}</math>


We find the partial decomposition
We find the partial decomposition


Let <math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}=\frac{A}{s}+\frac{Bs+C}{s^2+125s+20000}</math>
Let <math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}=\frac{A}{s}+\frac{Bs+C}{s^2+500s+2500}</math>


<math>\Rightarrow12500=A(s^2+125s+20000)+(Bs+C)s</math>
<math>\Rightarrow6250=A(s^2+500s+2500)+(Bs+C)s</math>


<math>\Rightarrow12500=As^2+125As+20000A+Bs^2+Cs</math>
<math>\Rightarrow62500=As^2+500As+2500A+Bs^2+Cs</math>


Comparing the coefficients we get
Comparing the coefficients we get


<math>A=\frac{5}{8},B=-5,C=-625</math>
<math>A=\frac{5}{2},B=-5,C=-1250</math>


Thus  
Thus  
<math>I_2(s)=\frac{5}{8s}-\frac{5s+625}{s^2+125s+20000}</math>
<math>I_2(s)=\frac{5}{2s}-\frac{5s+1250}{s^2+500s+2500}</math>


Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in


<math>I_1(s)= \frac{100s+12500}{s(s^2+125s+20000)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math>
<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math>
 
Taking the Inverse Laplace transform yields
 
<math>\mathcal{L}^{-1}\left\{I_1(s)\right\}=\frac{5}{8}+\frac{39\sqrt{103}}{824}sin*(\frac{25}{2}\sqrt{103}*t)</math>
 
 
<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}=</math>

Revision as of 18:24, 1 December 2009

Problem Statement

Using the formulas

E(t)=LdiRdt+RiC
RCdiRdt+iRiC=0

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

4di1dt+20i2=50

20(104)di2dt+i2i1=0

Applying the Laplace transform to each equation gives

4(s{i1}i1(0))+20{i2}=50

4sI1(s)+20I2(s)=50s

0.005(si2i2(0))+{i2}{i1}=0

500I1(s)+[s+500]I2(s)=0

Solving for I2(s)

I2(s)=6250s(s2+500s+2500)

We find the partial decomposition

Let I2(s)=6250s(s2+500s+2500)=As+Bs+Cs2+500s+2500

6250=A(s2+500s+2500)+(Bs+C)s

62500=As2+500As+2500A+Bs2+Cs

Comparing the coefficients we get

A=52,B=5,C=1250

Thus I2(s)=52s5s+1250s2+500s+2500

Now we do the same for I1 where we solve the function in terms of I1 and decomposing the partial fraction resulting in

I1(s)=25s+12500s(s2+500s+2500)=58s+5s+175s2+125s+20000

Taking the Inverse Laplace transform yields

1{I1(s)}=58+39103824sin*(252103*t)


1{I2(s)}=