Laplace transforms: Simple Electrical Network: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
==Solution== |
==Solution== |
||
Solve the system when V0 = 50 V, L = |
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero. |
||
Substituting numbers into the equations, we have |
|||
<math> |
<math>4\frac{di_1}{dt}+20i_2=50</math> |
||
<math> |
<math>20(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math> |
||
Applying the Laplace transform to each equation gives |
Applying the Laplace transform to each equation gives |
||
<math> |
<math>4(s\mathcal{L}\left\{i_1\right\}-i_1(0))+20\mathcal{L}\left\{i_2\right\}=50</math> |
||
<math>\Rightarrow4sI_1(s)+20I_2(s)=\frac{50}{s}</math> |
|||
⚫ | |||
<math>\ |
<math>0.005(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math> |
||
<math>- |
<math>\Rightarrow-500I_1(s)+[s+500]I_2(s)=0</math> |
||
Solving for <math>I_2(s)</math> |
Solving for <math>I_2(s)</math> |
||
<math>I_2(s)= \frac{ |
<math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}</math> |
||
We find the partial decomposition |
We find the partial decomposition |
||
Let <math>I_2(s)= \frac{ |
Let <math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}=\frac{A}{s}+\frac{Bs+C}{s^2+500s+2500}</math> |
||
<math>\ |
<math>\Rightarrow6250=A(s^2+500s+2500)+(Bs+C)s</math> |
||
<math>\ |
<math>\Rightarrow62500=As^2+500As+2500A+Bs^2+Cs</math> |
||
Comparing the coefficients we get |
Comparing the coefficients we get |
||
<math>A=\frac{5}{ |
<math>A=\frac{5}{2},B=-5,C=-1250</math> |
||
Thus |
Thus |
||
<math>I_2(s)=\frac{5}{ |
<math>I_2(s)=\frac{5}{2s}-\frac{5s+1250}{s^2+500s+2500}</math> |
||
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in |
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in |
||
<math>I_1(s)= \frac{ |
<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math> |
||
Taking the Inverse Laplace transform yields |
|||
<math>\mathcal{L}^{-1}\left\{I_1(s)\right\}=\frac{5}{8}+\frac{39\sqrt{103}}{824}sin*(\frac{25}{2}\sqrt{103}*t)</math> |
|||
⚫ |
Revision as of 17:24, 1 December 2009
Problem Statement
Using the formulas
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.
Solution
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.
Applying the Laplace transform to each equation gives
Solving for
We find the partial decomposition
Let
Comparing the coefficients we get
Thus
Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in
Taking the Inverse Laplace transform yields