HW10: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
sigC = real(ifft(sigA.*sigB));</pre>
sigC = real(ifft(sigA.*sigB));</pre>


cross correlatoin of same wave<br>
''To be completed later tonight''
[[image:Same_wave.jpg]]

cross correlation with 90degree delay<br>
[[image:90degree_shift.jpg]]

cross correlation with 45 degree delay<br>
[[image:45shift.jpb

cross correlation with <math>\frac{\pi}{1000}</math><br>
[[image:Pi_onethousanths_shift.jpg]]

Revision as of 22:22, 2 December 2009

Problem Statement

Present an Octave (or MATLAB) example using the discrete Fourier transform (DFT).

Solution

I decided to show a cross correlation example using MATLAB.


close all
clear all
f = 2; % sine wave frequency
tmax = 2; % go to 2 seconds
theta = pi/4;
T = 0.01; 
t = 0:T:tmax;
N = length(t);
Nmat = 0:N-2;
Zmat = Nmat *0;
sig1 = sin(2*pi*f*t); % A alpha signal
sig2 = sin(2*pi*f*t); % A beta signal
c= conv(sig1,sig2); %test of matrix size
%zeropad both vectors to length N1+N2-1 to avoid cyclic convolution
sigA = fft([sig1 Zmat]);
sigB = fft([sig2 Zmat]);
sigC = real(ifft(sigA.*sigB));

cross correlatoin of same wave
Same wave.jpg

cross correlation with 90degree delay
90degree shift.jpg

cross correlation with 45 degree delay
[[image:45shift.jpb

cross correlation with
Pi onethousanths shift.jpg