Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime} + (m_1+m_2)l_1g\theta_1 = 0</math>
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime} + (m_1+m_2)l_1g\theta_1 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime} + m_2l_2g\theta_2 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime} + m_2l_2g\theta_2 = 0</math>
== Solution ==
=== Laplace Transform ===
Since our concern is about the motion functions, we will assign the masses <math>m_1</math> and <math>m_2</math>, the rod lenghts <math>l_1</math> and <math>l_1</math>, and gravitational force <math>g</math> constants different variables as follows,
: <math>A=(m_1+m_2)l_1^2</math>,
: <math>B=m_2l_1l_2</math>,
: <math>C=(m_1+m_2)l_1</math>,
: <math>D=m_2l_1^2</math>, and
: <math>E=m_2l_2g</math>
Hence,
: <math>A\theta_1^{\prime\prime} + B\theta_2^{\prime\prime} + C\theta_1 = 0</math>
: <math>D\theta_2^{\prime\prime} + B\theta_1^{\prime\prime} + E\theta_2 = 0</math>

Revision as of 21:48, 6 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0

In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Laplace Transform

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants different variables as follows,

A=(m1+m2)l12,
B=m2l1l2,
C=(m1+m2)l1,
D=m2l12, and
E=m2l2g

Hence,

Aθ1+Bθ2+Cθ1=0
Dθ2+Bθ1+Eθ2=0