Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
== Solution ==
== Solution ==


=== Laplace Transform ===
Since our concern is about the motion functions, we will assign the masses <math>m_1</math> and <math>m_2</math>, the rod lenghts <math>l_1</math> and <math>l_1</math>, and gravitational force <math>g</math> constants to different variables as follows,  
Since our concern is about the motion functions, we will assign the masses <math>m_1</math> and <math>m_2</math>, the rod lenghts <math>l_1</math> and <math>l_1</math>, and gravitational force <math>g</math> constants to different variables as follows,  


Line 36: Line 35:
Hence,
Hence,


: <math>A\theta_1^{\prime\prime} + B\theta_2^{\prime\prime} + C\theta_1 = 0</math>
: <math>A\theta_1^{''} + B\theta_2^{''} + C\theta_1 = 0</math>
: <math>D\theta_2^{\prime\prime} + B\theta_1^{\prime\prime} + E\theta_2 = 0</math>
: <math>D\theta_2^{''} + B\theta_1^{''} + E\theta_2 = 0</math>


Solving the Laplace Transform system yeilds,
Solving for <math>theta_1^{''}</math> and <math>theta_2^{''}</math> we obtain,  


: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>
: <math>\theta_1^{''} = - \left ( \dfrac{B}{A} \right ) \theta_2^{''} - \left ( \dfrac{C}{A} \right ) \theta_1</math>
: <math>\theta_2^{''} = - \left ( \dfrac{B}{D} \right ) \theta_1^{''} - \left ( \dfrac{E}{D} \right ) \theta_2</math>


: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math>
Therefore,
 
At time <math>t=0</math> we assume that <math>\theta_1(t)^{\prime}=\theta_2(t)^{\prime}=0</math>. Thus, solvin for <math>\boldsymbol{\Theta}_1</math> and <math>\boldsymbol{\Theta}_2</math> we obtain,
 
: <math>\boldsymbol{\Theta}_1=\dfrac{sA\theta_1+sB\theta_2-s^2B\boldsymbol{\Theta}_2}{(s^2A+C)}</math>
: <math>\boldsymbol{\Theta}_2=\dfrac{sB\theta_1+sD\theta_2-s^2B\boldsymbol{\Theta}_1}{(s^2D+E)}</math>


: <math>\theta_1^{''} = - \left ( \dfrac{CD}{AD+B^2} \right ) \theta_1 - \left ( \dfrac{BE}{AD+B^2} \right ) \theta_2 </math>
: <math>\theta_2^{''} = \left ( \dfrac{BC}{AD+B^2} \right ) \theta_1 - \left ( \dfrac{AE}{AD+B^2} \right ) \theta_2</math>




=== State Space ===
=== State Space ===

Revision as of 00:11, 7 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1'+Bθ2'+Cθ1=0
Dθ2'+Bθ1'+Eθ2=0

Solving for theta1' and theta2' we obtain,

θ1'=(BA)θ2'(CA)θ1
θ2'=(BD)θ1'(ED)θ2

Therefore,

θ1'=(CDAD+B2)θ1(BEAD+B2)θ2
θ2'=(BCAD+B2)θ1(AEAD+B2)θ2


State Space