Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 59: Line 59:
\begin{bmatrix}
\begin{bmatrix}
0                  & 1 & 0                  & 0 \\
0                  & 1 & 0                  & 0 \\
& & & \\
\dfrac{-CD}{AD+B^2} & 0 & \dfrac{-BE}{AD+B^2} & 0 \\
\dfrac{-CD}{AD+B^2} & 0 & \dfrac{-BE}{AD+B^2} & 0 \\
& & & \\
0                  & 0 & 0                  & 1 \\
0                  & 0 & 0                  & 1 \\
& & & \\
\dfrac{BC}{AD+B^2}  & 0 & \dfrac{-AE}{AD+B^2} & 0 \\
\dfrac{BC}{AD+B^2}  & 0 & \dfrac{-AE}{AD+B^2} & 0 \\
\end{bmatrix}
\end{bmatrix}
Line 82: Line 85:
\begin{bmatrix}
\begin{bmatrix}
0                  & 1 & 0                  & 0 \\
0                  & 1 & 0                  & 0 \\
& & & \\
\dfrac{-l_1g(m_1+m_2)}{l_1^2(m_1+m_2)m_2+l_2^2m_2} & 0 & \dfrac{-l_2^2m_2g}{l_1(l_1^2(m_1+m_2)+l_2^2m_2)} & 0 \\
\dfrac{-l_1g(m_1+m_2)}{l_1^2(m_1+m_2)m_2+l_2^2m_2} & 0 & \dfrac{-l_2^2m_2g}{l_1(l_1^2(m_1+m_2)+l_2^2m_2)} & 0 \\
& & & \\
0                  & 0 & 0                  & 1 \\
0                  & 0 & 0                  & 1 \\
& & & \\
\dfrac{l_2g(m_1+m_2)}{l_1^2(m_1+m_2)m_2+l_2^2m_2}  & 0 & \dfrac{-l_2g(m_1+m_2)}{l_1^2(m_1+m_2)+l_2^2m_2} & 0 \\
\dfrac{l_2g(m_1+m_2)}{l_1^2(m_1+m_2)m_2+l_2^2m_2}  & 0 & \dfrac{-l_2g(m_1+m_2)}{l_1^2(m_1+m_2)+l_2^2m_2} & 0 \\
\end{bmatrix}
\end{bmatrix}

Revision as of 11:03, 7 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1'+Bθ2'+Cθ1=0
Dθ2'+Bθ1'+Eθ2=0

Solving for θ1' and θ2' we obtain,

θ1'=(BA)θ2'(CA)θ1
θ2'=(BD)θ1'(ED)θ2

Therefore,

θ1'=(CDAD+B2)θ1(BEAD+B2)θ2
θ2'=(BCAD+B2)θ1(AEAD+B2)θ2

State Space

[θ1'θ1'θ2'θ2']=[0100CDAD+B20BEAD+B200001BCAD+B20AEAD+B20]{θ1θ1'θ2θ2'}

Plugging constant values yields,

[θ1'θ1'θ2'θ2']=[0100l1g(m1+m2)l12(m1+m2)m2+l22m20l22m2gl1(l12(m1+m2)+l22m2)00001l2g(m1+m2)l12(m1+m2)m2+l22m20l2g(m1+m2)l12(m1+m2)+l22m20]{θ1θ1'θ2θ2'}