Coupled Oscillator: Jonathan Schreven: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 7: Line 7:


Using F=ma we can then find our equations of equilibrium.
Using F=ma we can then find our equations of equilibrium.
:'''Equation 1'''

:<math>\begin{alignat}{3}
:<math>\begin{alignat}{3}
F & = ma \\
F & = ma \\
Line 16: Line 16:
-{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
-{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
\end{alignat}</math>
\end{alignat}</math>
:'''Equation 2'''
:<math>\begin{alignat}{3}
F & = ma \\
F & = m\ddot{x} \\
-k_2(x_2-x_1) & = m_2\ddot{x_2} \\
{-k_2(x_2-x_1) \over {m_2}} & = \ddot{x_2} \\
-{k_2 \over {m_2}}x_2+{k_2 \over {m_2}}x_1 & = \ddot{x_2} \\
\end{alignat}</math>
:'''Equation 3'''
:<math>\dot{x_1}=\dot{x_1}</math>
:'''Equation 4'''
:<math>\dot{x_2}=\dot{x_2}</math>

Revision as of 17:41, 9 December 2009

Coupled Oscillator System

In this problem I would like to explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Our system might look something like this.


Using F=ma we can then find our equations of equilibrium.

Equation 1
Equation 2
Equation 3
Equation 4