Coupled Horizontal Spring Mass Oscillator: Difference between revisions
Jump to navigation
Jump to search
Mark.bernet (talk | contribs) |
Mark.bernet (talk | contribs) |
||
Line 125: | Line 125: | ||
<math>\text {Where }\,</math> | <math>\text {Where }\,</math> | ||
<math>\tilde{T}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\, | |||
</math> | |||
<math>\tilde{T}^{-1}=\,</math> | <math>\tilde{T}^{-1}=\,</math> |
Revision as of 19:54, 9 December 2009
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential