Coupled Horizontal Spring Mass Oscillator: Difference between revisions
Jump to navigation
Jump to search
Mark.bernet (talk | contribs) |
Mark.bernet (talk | contribs) |
||
Line 158: | Line 158: | ||
<math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math> | <math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math> | ||
---- | |||
Created By: Mark Bernet |
Revision as of 20:24, 9 December 2009
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential
</math>
Created By: Mark Bernet