Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 5: Line 5:
   [[Image:horizontal spring.jpg]]
   [[Image:horizontal spring.jpg]]
'''Initial Conditions:'''
'''Initial Conditions:'''
:<math>m_1= 10 kg\,</math>
:<math>m_2 = 10 kg\,</math>
:<math>k1=25 N/m\,</math>
:<math>k2=75 N/m\,</math>
:<math>k3=50 N/m\,</math>
'''Equations for M_1'''
:<math>\begin{alignat}{3}
                                                        F & = ma \\
                                                        F & = m\ddot{x} \\
                              -k_{1}x_{1}-k_{2}(x_1x_2)  & = m_1\ddot{x_1} \\
        -{k_1x_1 \over {m_1}}-{k_2(x_1-x_2) \over {m_1}} & = m_1\ddot{x_1} \\
        -{k_1x_1 \over {m_1}}-{k_2(x_1-x_2) \over {m_1}} & = \ddot{x_1} \\
          -{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
\end{alignat}</math>
'''Equations for M_2'''
:<math>\begin{alignat}{3}
                                                        F & = ma \\
                                                        F & = m\ddot{x} \\
                                            -k_2(x_2-x_1) & = m_2\ddot{x_2} \\
                              {-k_2(x_2-x_1) \over {m_2}} & = \ddot{x_2} \\
              -{k_2 \over {m_2}}x_2+{k_2 \over {m_2}}x_1 & = \ddot{x_2} \\
\end{alignat}</math>
'''Additional Equations'''
:<math>\dot{x_1}=\dot{x_1}</math>
:<math>\dot{x_2}=\dot{x_2}</math>
'''State Equations'''
<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(k_1-k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\
0&0&0&1 \\
\frac{k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}
\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}
</math>
'''With the numbers...'''
<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}
</math>

Revision as of 14:45, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=25N/m
k2=75N/m
k3=50N/m

Equations for M_1

F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨

Equations for M_2

F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨

Additional Equations

x1˙=x1˙
x2˙=x2˙

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)15kg0100N/m15kg00001100N/m15kg0(250N/m)15kg0][x1x˙1x2x˙2]