Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 116: Line 116:
:'''Given'''
:'''Given'''
:<math>m_1=10kg\,</math>
:<math>m_1=10kg\,</math>
:<math>m_2=5kg\,</math>
:<math>m_2=10kg\,</math>
:<math>k_1=25\,{N\over {m}}</math>
:<math>k_1=25\,{N\over {m}}</math>
:<math>k_2=20\,{N\over {m}}</math>
:<math>k_2=50\,{N\over {m}}</math>


We now have
We now have

Revision as of 13:52, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes and eigenvectors of the system.

 Horizontal spring.jpg

Initial Conditions:

Equations for M_1

Equations for M_2

Additional Equations

State Equations

=

With the numbers...


=

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.

Given

We now have

From this we get