Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 205: Line 205:
:<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
:<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
:<math>T^{-1}=\begin{bmatrix}
:<math>T^{-1}=\begin{bmatrix}
0 & 0 & 0 & 0 \\
0.0520 & 0.4176i & - 0.4176i & -0.0520 \\
0 & 0 & 0 & 0 \\
-0.1609 & -0.8928 & -0.8928 & -0.1609 \\
0 & 0 & 0 & 0 \\
-0.3031 & - 0.0716i & 0.0716i & 0.3031 \\
0 & 0 & 0 & 0
0.9378 & 0.1532 & 0.1532 & 0.9378
\end{bmatrix}</math>
\end{bmatrix}</math>


Line 217: Line 217:
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{bmatrix}</math>
'''So taking'''
:<math>\dot{z}=TAT^{-1}z</math>
'''We get the uncoupled matrix of'''
:<math>\dot{z}=\begin{bmatrix}
-3.0937 & 0 & 0 & 0 \\
0 & 2.1380i & 0 & 0 \\
0 & 0 & - 2.1380i & 0 \\
0 & 0 & 0 & 3.0937
\end{bmatrix}</math>
\end{bmatrix}</math>

Revision as of 16:10, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes and eigenvectors of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=25N/m
k2=75N/m
k3=50N/m

Equations for M_1

F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨

Equations for M_2

F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨

Additional Equations

x1˙=x1˙
x2˙=x2˙

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg025N/m10kg0000125N/m10kg0(100N/m)10kg0][x1x˙1x2x˙2]

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into MATLAB which will give you the eigen values automatically.

Given
m1=10kg
m2=10kg
k1=25Nm
k2=50Nm

We now have

[x1˙x1¨x2˙x2¨]=[0100502.5000012.50100][x1x1˙x2x2˙]+[0000]

From this we get

λ1=3.0937,
λ2=2.1380i,
λ3=2.1380i,
λ4=3.0937,

Eigen Vectors

Using the equation above and the same given conditions we can plug everything into MATLAB and get the eigen vectors which we will denote as k1,k2,k3,k4.

k1=[0.05200.16090.30310.9378]
k2=[0.4176i0.89280.0716i0.1532]
k3=[0.4176i0.89280.0716i0.1532]
k4=[0.05200.16090.30310.9378]

So then the answer is...

We can now plug these eigen vectors and eigen values into the standard equation

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t

x=c1[0.05200.16090.30310.9378]e3.0937+c2[0.4176i0.89280.0716i0.1532]e2.1380i+c3[0.4176i0.89280.0716i0.1532]e2.1380i+c4[0.05200.16090.30310.9378]e3.0937

Matrix Exponential

We now use matrix exponentials to solve the same problem.

z=Tx

So from the above equation we get this to prove the matrix exponetial works.

z˙=TAT1z



We also know what T equals and we can solve it for our case

T1=[k1|k2|k3|k4]
T1=[0.05200.4176i0.4176i0.05200.16090.89280.89280.16090.30310.0716i0.0716i0.30310.93780.15320.15320.9378]

Taking the inverse of this we can solve for T

T=[0000000000000000]

So taking

z˙=TAT1z

We get the uncoupled matrix of

z˙=[3.093700002.1380i00002.1380i00003.0937]