Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 63: Line 63:
0                  & 1 & 0                  & 0 \\
0                  & 1 & 0                  & 0 \\
  & & & \\
  & & & \\
\dfrac{-CD}{AD+B^2} & 0 & \dfrac{BE}{AD+B^2}  & 0 \\
\dfrac{-CD}{AD-B^2} & 0 & \dfrac{BE}{AD-B^2}  & 0 \\
  & & & \\
  & & & \\
0                  & 0 & 0                  & 1 \\
0                  & 0 & 0                  & 1 \\
  & & & \\
  & & & \\
\dfrac{BC}{AD+B^2}  & 0 & \dfrac{-AE}{AD+B^2} & 0 \\
\dfrac{BC}{AD-B^2}  & 0 & \dfrac{-AE}{AD-B^2} & 0 \\
\end{bmatrix}
\end{bmatrix}


Line 80: Line 80:
</math>
</math>


Plugging the constants yields,
Let's plug some numbers. Knowing <math>g=32</math>, and assuming that <math>m_1=3</math>, <math>m_2=1</math>, and <math>l_1=l_2=16</math>, the constants defined previously become,


: <math>
: <math>A=1024 \quad B=256 \quad C=2048 \quad D=256 \quad E=512</math>
\begin{bmatrix}
\theta_1^{'} \\ \theta_1^{''} \\ \theta_2^{'} \\ \theta_2^{''}
\end{bmatrix}
 
=
 
\begin{bmatrix}
0                  & 1 & 0                  & 0 \\
& & & \\
\dfrac{-l_1(m_1+m_2)g}{l_1^2(m_1+m_2)+l_2^2m_2} & 0 & \dfrac{l_2^2m_2g}{l_1(l_1^2(m_1+m_2)+l_2^2m_2)} & 0 \\
& & & \\
0                  & 0 & 0                  & 1 \\
& & & \\
\dfrac{l_2(m_1+m_2)g}{l_1^2(m_1+m_2)+l_2^2m_2}  & 0 & \dfrac{-l_2(m_1+m_2)g}{l_1^2(m_1+m_2)+l_2^2m_2} & 0 \\
\end{bmatrix}
 
\begin{Bmatrix}
\theta_1 \\ \theta_1^{'} \\ \theta_2 \\ \theta_2^{'}
\end{Bmatrix}
 
</math>


Let's plug some numbers. Knowing <math>g=32</math>, and assuming that <math>m_1=3</math>, <math>m_2=1</math>, and <math>l_1=l_2=16</math>, the state space matrix becomes,  
Hence, the state space matrix is,  


: <math>
: <math>
Line 116: Line 95:
\begin{bmatrix}
\begin{bmatrix}
0            & 1 & 0            & 0 \\
0            & 1 & 0            & 0 \\
-\dfrac{8}{5} & 0 & \dfrac{2}{5} & 0 \\
-\dfrac{8}{3} & 0 & \dfrac{2}{3} & 0 \\
0            & 0 & 0            & 1 \\
0            & 0 & 0            & 1 \\
\dfrac{8}{5}  & 0 & -\dfrac{8}{5} & 0 \\
\dfrac{8}{8}  & 0 & -\dfrac{8}{3} & 0 \\
\end{bmatrix}
\end{bmatrix}



Revision as of 20:02, 11 December 2009

By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1'+Bθ2'+Cθ1=0
Dθ2'+Bθ1'+Eθ2=0

Solving for θ1' and θ2' we obtain,

θ1'=(BA)θ2'(CA)θ1
θ2'=(BD)θ1'(ED)θ2

Therefore,

θ1'=(CDAD+B2)θ1(BEAD+B2)θ2
θ2'=(BCAD+B2)θ1(AEAD+B2)θ2

State Space

[θ1'θ1'θ2'θ2']=A^x_(t)+B^u_(t)=[0100CDADB20BEADB200001BCADB20AEADB20]{θ1θ1'θ2θ2'}+0^

Let's plug some numbers. Knowing g=32, and assuming that m1=3, m2=1, and l1=l2=16, the constants defined previously become,

A=1024B=256C=2048D=256E=512

Hence, the state space matrix is,

[θ1'θ1'θ2'θ2']=[01008302300001880830]{θ1θ1'θ2θ2'}

Laplace Transform

First, we determine the eigenvalues of the A^ matrix,

[sIA]=[s10085s85000s185085s]

Hence, the inverse matrix (thanks TI-89!) is,

[sIA]1=[5s(5s2+8)25s4+80s2+1285(5s2+8)25s4+80s2+12840s25s4+80s2+1284025s4+80s2+1288(5s2+16)25s4+80s2+1285s(5s2+8)25s4+80s2+12840s225s4+80s2+12840s25s4+80s2+12840s25s4+80s2+1284025s4+80s2+1285s(5s2+8)25s4+80s2+1285(5s2+8)25s4+80s2+12840s225s4+80s2+12840s25s4+80s2+1288(5s2+16)25s4+80s2+1285s(5s2+8)25s4+80s2+128]