Coupled Oscillator: Hellie: Difference between revisions
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
'''Initial Conditions:''' | '''Initial Conditions:''' | ||
:<math>m_1= | :<math>m_1= 10 kg\,</math> | ||
:<math>m_2 = | :<math>m_2 = 10 kg\,</math> | ||
:<math>k1=100 N/m\,</math> | :<math>k1=100 N/m\,</math> | ||
Line 75: | Line 75: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
0&1&0&0 \\ | 0&1&0&0 \\ | ||
\frac{(-50 N/m)}{ | \frac{(-50 N/m)}{10 kg}&0&\frac{-100 N/m}{10 kg}&0 \\ | ||
0&0&0&1 \\ | 0&0&0&1 \\ | ||
\frac{100 N/m}{ | \frac{-100 N/m}{10 kg}&0&\frac{(250 N/m)}{10 kg}&0 | ||
\end{bmatrix} | \end{bmatrix} | ||
Line 89: | Line 89: | ||
</math> | </math> | ||
<math> | |||
\begin{bmatrix} | |||
\dot{x_1} \\ | |||
\ddot{x_1} \\ | |||
\dot{x_2} \\ | |||
\ddot{x_2} | |||
\end{bmatrix}\, | |||
</math> | |||
= | |||
<math> | |||
\begin{bmatrix} | |||
0&1&0&0 \\ | |||
-5&0&-10&0 \\ | |||
0&0&0&1 \\ | |||
-10&0&25&0 | |||
\end{bmatrix} | |||
\begin{bmatrix} | |||
x_1 \\ | |||
\dot{x}_1 \\ | |||
x_2 \\ | |||
\dot{x}_2 | |||
\end{bmatrix} | |||
</math> | |||
'''Eigenvalues''' | |||
<math>\lambda_1=-5.29412\,</math> | |||
<math>\lambda_2=2.83333i\,</math> | |||
<math>\lambda_3= -2.83333i\,</math> | |||
<math>\lambda_4=0\,</math> | |||
'''Eigenvectors''' | |||
:<math>k_1=\begin{bmatrix} | |||
-.05379\\ | |||
.28475 \\ | |||
.17764 \\ | |||
-.94046 | |||
\end{bmatrix}</math> | |||
:<math>k_2=\begin{bmatrix} | |||
-.31854i\\ | |||
.90253 \\ | |||
-.09645i\\ | |||
.27326 | |||
\end{bmatrix}</math> | |||
:<math>k_3=\begin{bmatrix} | |||
.31854i\\ | |||
.90253 \\ | |||
.09645i \\ | |||
.27326 | |||
\end{bmatrix}</math> | |||
:<math>k_4=\begin{bmatrix} | |||
-.05379\\ | |||
-.28475 \\ | |||
.17764 \\ | |||
.94046 | |||
\end{bmatrix}</math> | |||
Revision as of 12:38, 13 December 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.
Initial Conditions:
State Equations
=
With the numbers...
=
=
Eigenvalues
Eigenvectors
Eigenmodes
- There are two eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
Solve Using the Matrix Exponential
=
Written by: Andrew Hellie