Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 1: Line 1:
===Problem Statement===
===Problem Statement===


'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system.'''
 
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system. Solve Using the Matrix Exponential'''


   [[Image:Coupled_Oscillator.jpg]]
   [[Image:Coupled_Oscillator.jpg]]
Line 192: Line 193:
.17764 \\
.17764 \\
.94046
.94046
\end{bmatrix},
\end{bmatrix}\,
</math><math>e^{0}\,</math>
</math><math>e^{0}\,</math>


'''Eigenmodes'''
'''Eigenmodes'''
Line 207: Line 206:




'''Matrix Exponential using transformation z=Tx'''
<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
<math>z=Tx\,</math>
<math>\dot{z}=TAT^{-1}z \,</math>
<math>\dot{z}=\,</math>
<math>\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,
</math>
<math>z\,</math>
<math>B=TAT^{-1}=\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,</math>


'''Solve Using the Matrix Exponential'''
 
 
<math>z=e^{Bt}z(0)\,</math>
 
 
<math>e^{Bt}=\begin{bmatrix}
e^{-5.2941}&0&0&0 \\
0&e^{2.833i}&0&0 \\
0&0&e^{-2.83333i}&0 \\
0&0&0&e^{5.2941}
\end{bmatrix}\,</math>
 
<math>x=T^{-1}z
 
<math>x=T^{-1}e^{Bt}Tx(0)\,</math>
 
<math>e^{Pt}=T^{-1}e^{Bt}T\,</math>
 
<math>e^{Pt}=\,</math>lots of variables
 
'''Another way to solve using the Matrix exponential'''




Line 228: Line 276:




<math>[SI-A]^{-1} = \,</math>  
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out)
 


<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>


<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>(something too large for my calculator to display or that I want to type out)


Written by: Andrew Hellie
Written by: Andrew Hellie

Revision as of 15:29, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential

 

Initial Conditions:

m1=10kg
m2=10kg
k1=100N/m
k2=150N/m
k3=100N/m

F=ma

x1¨=x1(k1k2)m1x2*k1m1
x2¨=x2(k1+k2)m2x1*k1m2

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg0100N/m10kg00001100N/m10kg0(250N/m)10kg0][x1x˙1x2x˙2]


[x1˙x1¨x2˙x2¨] = [0100501000001100250][x1x˙1x2x˙2]


Eigenvalues

λ1=5.29412
λ2=2.83333i
λ3=2.83333i
λ4=0


Eigenvectors

k1=[.05379.28475.17764.94046]


k2=[.31854i.90253.09645i.27326]


k3=[.31854i.90253.09645i.27326]


k4=[.05379.28475.17764.94046]

Standard Equation

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t
x=c1[.05379.28475.17764.94046]e5.29412+c2[.31854i.90253.09645i.27326]e2.83333i+c3[.31854i.90253.09645i.27326]e2.83333i+c4[.05379.28475.17764.94046]e0

Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference


Matrix Exponential using transformation z=Tx

T1=[k1|k2|k3|k4]

z=Tx


z˙=TAT1z


z˙= [5.294100002.833i00002.83333i00005.2941] z


B=TAT1=[5.294100002.833i00002.83333i00005.2941]


z=eBtz(0)


eBt=[e5.29410000e2.833i0000e2.83333i0000e5.2941]

x=T1z<math>x=T1eBtTx(0)

ePt=T1eBtT

ePt=lots of variables

Another way to solve using the Matrix exponential


eAt=1{[SIA]1}


[SIA] = [S100(50N/m)15kgS100N/m15kg000S1100N/m15kg0(250N/m)15kgS]


[SIA]1= (something too large for my calculator to display or that I want to type out)


1{[SIA]1}=(something too large for my calculator to display or that I want to type out)

Written by: Andrew Hellie