Coupled Oscillator: Spring Pendulums: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
===Solution===
===Solution===
----
----
By definition, the the state equation is stated as
<math>
\underline{\dot{x}} = \widehat{A} \, \underline{x} + \widehat{B} \, \underline{u}
</math>
Now, consider the motion equations described in the Solution section,
<math>m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)=m_1\ddot{x}_1+k_1x_1-k_2x_2+k_2x_1=0</math>
<math>m_2\ddot{x}_2+k_2(x_2-x_1)-k_3x_2=m_2\ddot{x}_2+k_2x_2-k_2x_1-k_3x_2=0</math>
Solving for <math>\ddot{x}_1</math> and <math>\ddot{x}_2</math> yields,
:<math>\ddot{x}_1=-\dfrac{k_1}{m_1}x_1+\dfrac{k_2}{m_1}x_2-\dfrac{k_2}{m_1}x_1</math>
:<math>\ddot{x}_2=\dfrac{-k_2}{m_2}x_2+\dfrac{k_2}{m_2}x_1+\dfrac{k_3}{m_2}x_2</math>
Finally, we let <math>x_1 \frac{}{}</math>, <math>\dot{x}_1 \frac{}{}</math>, <math>x_2 \frac{}{}</math>, and <math>\dot{x_2} \frac{}{}</math> be the state variables. Thus,
<math>
\begin{bmatrix}
\dot{x}_1 \\
\ddot{x}_1 \\
\dot{x}_2 \\
\ddot{x}_2
\end{bmatrix}
=
\begin{bmatrix}
0                              & 1 & 0                        & 0 \\
-\frac{1}{m_1}(k_1+k_2)        & 0 & \frac{k_2}{m_1}          & 0 \\
0                              & 0 & 0                        & 1 \\
\frac{k_2}{m_2}                & 0 & \frac{1}{m_2}(k_3-k_2)  & 0
\end{bmatrix}
\begin{bmatrix}
x_1      \\
\dot{x}_1 \\
x_2      \\
\dot{x}_2
\end{bmatrix}
</math>




----
----
Created by Kendrick Mensink
Created by Kendrick Mensink

Latest revision as of 17:56, 13 December 2009

Problem Statement


Use State Space methods to write up the solution to a coupled pendulum problem. Describe the eigen-modes of the system.

Solution


By definition, the the state equation is stated as

x˙_=A^x_+B^u_


Now, consider the motion equations described in the Solution section,


m1x¨1+k1x1k2(x2x1)=m1x¨1+k1x1k2x2+k2x1=0

m2x¨2+k2(x2x1)k3x2=m2x¨2+k2x2k2x1k3x2=0


Solving for x¨1 and x¨2 yields,


x¨1=k1m1x1+k2m1x2k2m1x1
x¨2=k2m2x2+k2m2x1+k3m2x2


Finally, we let x1, x˙1, x2, and x2˙ be the state variables. Thus,


[x˙1x¨1x˙2x¨2]=[01001m1(k1+k2)0k2m100001k2m201m2(k3k2)0][x1x˙1x2x˙2]



Created by Kendrick Mensink