|
|
Line 242: |
Line 242: |
|
|
|
|
|
<math>e^{Bt}=\begin{bmatrix} |
|
<math>e^{Bt}=\begin{bmatrix} |
|
e^{-5.2941}&0&0&0 \\ |
|
e^{-5.2941t}&0&0&0 \\ |
|
0&e^{2.833i}&0&0 \\ |
|
0&e^{2.833it}&0&0 \\ |
|
0&0&e^{-2.83333i}&0 \\ |
|
0&0&e^{-2.83333it}&0 \\ |
|
0&0&0&e^{5.2941} |
|
0&0&0&e^{5.2941t} |
|
\end{bmatrix}\,</math> |
|
\end{bmatrix}\,</math> |
|
|
|
|
|
<math>x=T^{-1}z |
|
<math>x=T^{-1}z\,</math> |
|
|
|
|
|
<math>x=T^{-1}e^{Bt}Tx(0)\,</math> |
|
<math>x=T^{-1}e^{Bt}Tx(0)\,</math> |
Latest revision as of 22:28, 13 December 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential
Initial Conditions:
F=ma
State Equations
=
With the numbers...
=
=
Eigenvalues
Eigenvectors
Standard Equation
Eigenmodes
- There are two eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
Matrix Exponential using transformation z=Tx
lots of variables
Another way to solve using the Matrix exponential
=
(something too large for my calculator to display or that I want to type out)
(something too large for my calculator to display or that I want to type out)
Written by: Andrew Hellie