Linear Time Invariant System: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 11: Line 11:
! Input !! Output || Reason
! Input !! Output || Reason
|-
|-
| <math>\delta (t)</math> || <math>h(t)</math> || Given
| <math>\delta (t)</math> || <math>h(t)</math> !! Given
|-
|-
| <math>\delta (t- \lambda )</math> || <math>h(t-\lambda )</math> || Time invariance
| <math>\delta (t- \lambda )</math> || <math>h(t-\lambda )</math> || Time invariance
| <math>x(\lambda) \delta (t- \lambda )</math> || <math>x(\lambda) h(t-\lambda )</math> || Proportionality
| <math>x(\lambda) \delta (t- \lambda )</math> || <math>x(\lambda) h(t-\lambda )</math> || Proportionality
| <math>\int_-\infty^\infty x(\lambda) \delta (t- \lambda ) d \lambda</math> || <math>\int_-\infty^\infty x(\lambda) h(t- \lambda ) d \lambda</math> || Superposition
| <math>\int_-\infty^\infty x(\lambda) \delta (t- \lambda ) d \lambda</math> || <math>\int_-\infty^\infty x(\lambda) h(t- \lambda ) d \lambda</math> || Superposition
|}


{| class="wikitable" border="1"
|+ caption
! heading !! heading
|-
| cell || cell
|-
| cell || cell
|}
|}

Revision as of 21:25, 6 January 2010

Linear Time Invariant Systems (LTI Systems)

A linear time invariant system is one that is linear (superposition and proportionality apply) and one that doesn't change with time. For example a circuit with fixed capacitors, resistors, and inductors having an input and an output is linear and time invariant. If a capacitor changed value with time, then it would not be time invariant.

Eigenfunctions and Eigenvalues of an LTI Systems

It is an interesting exercise to show that are eigenfunctions of any LTI system. The eigenvalues are .


LTI System
Input Output Reason
 !! Given
Time invariance Proportionality Superposition


caption
heading heading
cell cell
cell cell