|
|
Line 39: |
Line 39: |
|
:<math>F(s) = \mathcal{L} \left\{u(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) \,dt = </math> <math> \frac {e^{-as}} {s} </math> |
|
:<math>F(s) = \mathcal{L} \left\{u(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) \,dt = </math> <math> \frac {e^{-as}} {s} </math> |
|
|
|
|
|
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = </math> <math> e^{-as} G(s) </math> |
|
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = e^{-as} G(s) </math> |
|
|
|
|
|
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = </math> <math> sG(s) - g(0) </math> |
|
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = sG(s) - g(0) </math> |
Revision as of 18:28, 11 January 2010
Standard Form:
Sample Functions:
-
-
-
-
-
-
-
-
-
-
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
-
-
-
-
-
-