Laplace Transform: Difference between revisions
Jump to navigation
Jump to search
Brian.Roath (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Standard Form |
==Standard Form== |
||
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt </math> |
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt </math> |
||
Sample Functions |
==Sample Functions== |
||
:<math>F(s) = \mathcal{L} \left\{1\right\}=\int_0^{\infty} e^{-st} \,dt = </math> <math> \frac {1}{s}</math> |
:<math>F(s) = \mathcal{L} \left\{1\right\}=\int_0^{\infty} e^{-st} \,dt = </math> <math> \frac {1}{s}</math> |
||
Line 44: | Line 44: | ||
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math> |
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math> |
||
==External Links== |
|||
==Authors== |
|||
==Reviewed By== |
|||
==Read By== |