Laplace Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 44: Line 44:


:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math>
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math>

:<math>F(s) = \mathcal{L} \left\{\int_0^{\t} g(t) \,dt \right\}=\int_0^{\t} e^{-st} g''(t) \,dt = s^2 \cdot G(s) - s \cdot g(0) - g'(0) </math>


==External Links==
==External Links==

Revision as of 18:42, 11 January 2010

Standard Form

Sample Functions

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(s) = \mathcal{L} \left\{\int_0^{\t} g(t) \,dt \right\}=\int_0^{\t} e^{-st} g''(t) \,dt = s^2 \cdot G(s) - s \cdot g(0) - g'(0) }

External Links

Authors

Reviewed By

Read By