Laplace Transform: Difference between revisions
From Class Wiki
Jump to navigation
Jump to search
Revision as of 18:45, 11 January 2010
(
view source
)
Brian.Roath
(
talk
|
contribs
)
No edit summary
← Older edit
Revision as of 18:46, 11 January 2010
(
view source
)
Brian.Roath
(
talk
|
contribs
)
(
→Authors
)
Newer edit →
Line 48:
Line 48:
==Authors==
==Authors==
Colby Fullerton
Brian Roath
==Reviewed By==
==Reviewed By==
Revision as of 18:46, 11 January 2010
Contents
1
Standard Form
2
Sample Functions
3
External Links
4
Authors
5
Reviewed By
6
Read By
Standard Form
F
(
s
)
=
L
{
f
(
t
)
}
=
∫
0
∞
e
−
s
t
f
(
t
)
d
t
{\displaystyle F(s)={\mathcal {L}}\left\{f(t)\right\}=\int _{0}^{\infty }e^{-st}f(t)\,dt}
Sample Functions
F
(
s
)
=
L
{
1
}
=
∫
0
∞
e
−
s
t
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{1\right\}=\int _{0}^{\infty }e^{-st}\,dt=}
1
s
{\displaystyle {\frac {1}{s}}}
F
(
s
)
=
L
{
t
n
}
=
∫
0
∞
e
−
s
t
t
n
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{t^{n}\right\}=\int _{0}^{\infty }e^{-st}t^{n}\,dt=}
n
!
s
n
+
1
{\displaystyle {\frac {n!}{s^{n+1}}}}
F
(
s
)
=
L
{
e
a
t
}
=
∫
0
∞
e
−
s
t
e
a
t
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{e^{at}\right\}=\int _{0}^{\infty }e^{-st}e^{at}\,dt=}
1
s
−
a
{\displaystyle {\frac {1}{s-a}}}
F
(
s
)
=
L
{
s
i
n
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
s
i
n
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{sin(\omega t)\right\}=\int _{0}^{\infty }e^{-st}sin(\omega t)\,dt=}
ω
s
2
+
ω
2
{\displaystyle {\frac {\omega }{s^{2}+\omega ^{2}}}}
F
(
s
)
=
L
{
c
o
s
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
c
o
s
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{cos(\omega t)\right\}=\int _{0}^{\infty }e^{-st}cos(\omega t)\,dt=}
s
s
2
+
ω
2
{\displaystyle {\frac {s}{s^{2}+\omega ^{2}}}}
F
(
s
)
=
L
{
t
n
g
(
t
)
}
=
∫
0
∞
e
−
s
t
t
n
g
(
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{t^{n}g(t)\right\}=\int _{0}^{\infty }e^{-st}t^{n}g(t)\,dt=}
(
−
1
)
n
d
n
G
(
s
)
d
s
n
for
n
= 1,2,...
{\displaystyle {\frac {(-1)^{n}d^{n}G(s)}{ds^{n}}}{\mbox{ for}}~n\ {\mbox{= 1,2,...}}}
F
(
s
)
=
L
{
t
s
i
n
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
t
s
i
n
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{tsin(\omega t)\right\}=\int _{0}^{\infty }e^{-st}tsin(\omega t)\,dt=}
2
ω
s
(
s
2
+
ω
2
)
2
{\displaystyle {\frac {2\omega s}{(s^{2}+\omega ^{2})^{2}}}}
F
(
s
)
=
L
{
t
c
o
s
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
t
c
o
s
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{tcos(\omega t)\right\}=\int _{0}^{\infty }e^{-st}tcos(\omega t)\,dt=}
s
2
−
ω
2
(
s
2
+
ω
2
)
2
{\displaystyle {\frac {s^{2}-\omega ^{2}}{(s^{2}+\omega ^{2})^{2}}}}
F
(
s
)
=
L
{
g
(
t
)
}
=
∫
0
∞
e
−
s
t
g
(
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{g(t)\right\}=\int _{0}^{\infty }e^{-st}g(t)\,dt=}
1
a
G
(
s
a
)
{\displaystyle {\frac {1}{a}}G\left({\frac {s}{a}}\right)}
F
(
s
)
=
L
{
e
a
t
g
(
t
)
}
=
∫
0
∞
e
−
s
t
e
a
t
g
(
t
)
d
t
=
G
(
s
−
a
)
{\displaystyle F(s)={\mathcal {L}}\left\{e^{at}g(t)\right\}=\int _{0}^{\infty }e^{-st}e^{at}g(t)\,dt=G(s-a)}
F
(
s
)
=
L
{
e
a
t
t
n
}
=
∫
0
∞
e
−
s
t
e
a
t
t
n
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{e^{at}t^{n}\right\}=\int _{0}^{\infty }e^{-st}e^{at}t^{n}\,dt=}
n
!
(
s
−
a
)
n
+
1
for
n
= 1,2,...
{\displaystyle {\frac {n!}{(s-a)^{n+1}}}{\mbox{ for}}~n\ {\mbox{= 1,2,...}}}
F
(
s
)
=
L
{
t
e
−
t
}
=
∫
0
∞
e
−
s
t
t
e
−
t
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{te^{-t}\right\}=\int _{0}^{\infty }e^{-st}te^{-t}\,dt=}
1
(
s
+
1
)
2
{\displaystyle {\frac {1}{(s+1)^{2}}}}
F
(
s
)
=
L
{
1
−
e
−
t
/
T
}
=
∫
0
∞
e
−
s
t
(
1
−
e
−
t
/
T
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{1-e^{-t/T}\right\}=\int _{0}^{\infty }e^{-st}(1-e^{-t/T})\,dt=}
1
s
(
1
+
T
s
)
{\displaystyle {\frac {1}{s(1+Ts)}}}
F
(
s
)
=
L
{
e
a
t
s
i
n
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
e
a
t
s
i
n
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{e^{at}sin(\omega t)\right\}=\int _{0}^{\infty }e^{-st}e^{at}sin(\omega t)\,dt=}
ω
(
s
−
a
)
2
+
ω
2
{\displaystyle {\frac {\omega }{(s-a)^{2}+\omega ^{2}}}}
F
(
s
)
=
L
{
e
a
t
c
o
s
(
ω
t
)
}
=
∫
0
∞
e
−
s
t
e
a
t
c
o
s
(
ω
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{e^{at}cos(\omega t)\right\}=\int _{0}^{\infty }e^{-st}e^{at}cos(\omega t)\,dt=}
s
−
a
(
s
−
a
)
2
+
ω
2
{\displaystyle {\frac {s-a}{(s-a)^{2}+\omega ^{2}}}}
F
(
s
)
=
L
{
u
(
t
)
}
=
∫
0
∞
e
−
s
t
u
(
t
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{u(t)\right\}=\int _{0}^{\infty }e^{-st}u(t)\,dt=}
1
s
{\displaystyle {\frac {1}{s}}}
F
(
s
)
=
L
{
u
(
t
−
a
)
}
=
∫
0
∞
e
−
s
t
u
(
t
−
a
)
d
t
=
{\displaystyle F(s)={\mathcal {L}}\left\{u(t-a)\right\}=\int _{0}^{\infty }e^{-st}u(t-a)\,dt=}
e
−
a
s
s
{\displaystyle {\frac {e^{-as}}{s}}}
F
(
s
)
=
L
{
u
(
t
−
a
)
g
(
t
−
a
)
}
=
∫
0
∞
e
−
s
t
u
(
t
−
a
)
g
(
t
−
a
)
d
t
=
e
−
a
s
G
(
s
)
{\displaystyle F(s)={\mathcal {L}}\left\{u(t-a)g(t-a)\right\}=\int _{0}^{\infty }e^{-st}u(t-a)g(t-a)\,dt=e^{-as}G(s)}
F
(
s
)
=
L
{
g
′
(
t
)
}
=
∫
0
∞
e
−
s
t
g
′
(
t
)
d
t
=
s
G
(
s
)
−
g
(
0
)
{\displaystyle F(s)={\mathcal {L}}\left\{g'(t)\right\}=\int _{0}^{\infty }e^{-st}g'(t)\,dt=sG(s)-g(0)}
F
(
s
)
=
L
{
g
″
(
t
)
}
=
∫
0
∞
e
−
s
t
g
″
(
t
)
d
t
=
s
2
⋅
G
(
s
)
−
s
⋅
g
(
0
)
−
g
′
(
0
)
{\displaystyle F(s)={\mathcal {L}}\left\{g''(t)\right\}=\int _{0}^{\infty }e^{-st}g''(t)\,dt=s^{2}\cdot G(s)-s\cdot g(0)-g'(0)}
F
(
s
)
=
L
{
g
(
n
)
(
t
)
}
=
∫
0
∞
e
−
s
t
g
(
n
)
(
t
)
d
t
=
s
n
⋅
G
(
s
)
−
s
n
−
1
⋅
g
(
0
)
−
s
n
−
2
⋅
g
′
(
0
)
−
.
.
.
−
g
(
n
−
1
)
(
0
)
{\displaystyle F(s)={\mathcal {L}}\left\{g^{(n)}(t)\right\}=\int _{0}^{\infty }e^{-st}g^{(n)}(t)\,dt=s^{n}\cdot G(s)-s^{n-1}\cdot g(0)-s^{n-2}\cdot g'(0)-...-g^{(n-1)}(0)}
External Links
Authors
Colby Fullerton Brian Roath
Reviewed By
Read By
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Search
Navigation
Main page
Class Notes
Assembly
Circuits
LNA
Feedback
Electronics
EMEC
Signals
Digital Control
Communications
Power Electronics
Intro to CAD
E&M
Embedded
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information