Laplace Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

Laplace transforms are an adapted integral form of a differential equation (created and introduced by the French mathematician Pierre-Simon Laplace (1749-1827)) used to describe electrical circuits and physical processes. Adapted from previous notions given by other notable mathematicians and engineers like Joseph-Louis Lagrange (1736-1812) and Leonhard Euler (1707-1783), Laplace transforms are used to be a more efficient and easy-to-recognize form of a mathematical equation.
Laplace transforms are an adapted integral form of a differential equation (created and introduced by the French mathematician Pierre-Simon Laplace (1749-1827)) used to describe electrical circuits and physical processes. Adapted from previous notions given by other notable mathematicians and engineers like Joseph-Louis Lagrange (1736-1812) and Leonhard Euler (1707-1783), Laplace transforms are used to be a more efficient and easy-to-recognize form of a mathematical equation.



Revision as of 18:55, 11 January 2010

Laplace transforms are an adapted integral form of a differential equation (created and introduced by the French mathematician Pierre-Simon Laplace (1749-1827)) used to describe electrical circuits and physical processes. Adapted from previous notions given by other notable mathematicians and engineers like Joseph-Louis Lagrange (1736-1812) and Leonhard Euler (1707-1783), Laplace transforms are used to be a more efficient and easy-to-recognize form of a mathematical equation.

Standard Form

Sample Functions

External links

Authors

Colby Fullerton

Brian Roath

Reviewed By

Read By