An Ideal Transformer Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 9: Line 9:


Therefore, <math>{e_{1}}(t) = {V_{1}}\cos(120 \pi t)</math>
Therefore, <math>{e_{1}}(t) = {V_{1}}\cos(120 \pi t)</math>

Now <math>{Z_{th}}</math> is the impedance seen by the voltage source supplying winding 1.

Revision as of 16:31, 15 January 2010

Consider a simple, transformer with two windings. Find the current provided by the voltage source.

  • Winding 1 has a sinusoidal voltage of ° applied to it at a frequency of 60Hz.
  • The combined load on winding 2 is

Solution

, so

Therefore,

Now is the impedance seen by the voltage source supplying winding 1.