Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>


1) Use vector analogy
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math>
:<math> \int_{\frac {-T} {2}}^{\frac {T} {2}} x(t) \sin \left( \frac {2\pi mt} {T} \right) \,dt = v_m</math>





Revision as of 15:53, 17 January 2010

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Functions graphed in vector form.


Error creating thumbnail: File missing
Modeling functions as vectors. Using function approximations, the vector path is described.


Error creating thumbnail: File missing
Function waves with varying periods based on the function x(t) = x(t+T)
vx=vi^
v^=vxi^+vyj^
v^=ivia^i
vx,vy
u^v^=|u^||v^|cosθ
x(t)=n=1[bnsin((2πnT)t)]

1) Use vector analogy

x(t)sin(2πmtT)=n=1[bnsin((2πnT)t)sin(2πmtT)]
T2T2x(t)sin(2πmtT)dt=vm


External Links

Authors

Colby Fullerton

Brian Roath