Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
:<math> \langle v_x, v_y\rangle</math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} (\mathbf{\hat{i}} \cdot \mathbf{\hat{i}}) + v_\mathrm{y} \mathbf{\hat{j}} \cdot \mathbf{\hat{i}} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math>
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math>


1) Use vector analogy
1) Use vector analogy

Revision as of 15:54, 17 January 2010

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Functions graphed in vector form.


Error creating thumbnail: File missing
Modeling functions as vectors. Using function approximations, the vector path is described.


Error creating thumbnail: File missing
Function waves with varying periods based on the function x(t) = x(t+T)
vx=vi^
v^=vxi^+vyj^
v^=ivia^i
vx,vy
u^v^=|u^||v^|cosθ
vi^=vx(i^i^)+vyj^i^
vi^=vx
va^m=ivia^ia^m=vm
x(t)=n=1[bnsin((2πnT)t)]


1) Use vector analogy

x(t)sin(2πmtT)=n=1[bnsin((2πnT)t)sin(2πmtT)]
T2T2x(t)sin(2πmtT)dt=vm


External Links

Authors

Colby Fullerton

Brian Roath